
19PRICE INDICES USING AN ARTIFICIAL DATA SET

Introduction
19.1 In order to give the reader some idea of how

much the various index numbers might differ using a
‘‘real’’ data set, virtually all the major indices defined in
the previous chapters are computed in this chapter using
an artificial data set consisting of prices and quantities
for six commodities over five periods. The data are
described in paragraphs 19.3 and 19.4.
19.2 The contents of the remaining sections are

outlined in this paragraph. In the section starting with
paragraph 19.5, two of the early unweighted indices are
computed: the Carli and Jevons indices. Two of the
earliest weighted indices are also computed in this sec-
tion: the Laspeyres and Paasche indices. Both fixed base
and chained indices are computed. In the section start-
ing with paragraph 19.9, various asymmetrically1

weighted indices are computed. In the section starting
with paragraph 19.17, symmetrically2 weighted indices
are computed. Some of these indices are superlative,
while others are not. The section starting with para-
graph 19.23 computes some superlative indices using
two stages of aggregation and compares the resulting
two-stage indices with their single-stage counterparts.
The following section computes various Lloyd–Moulton
indices3 and compares them with superlative indices.
The section starting with paragraph 19.32 computes
two additive percentage change decompositions for the
Fisher ideal index and compares the resulting decom-
positions, which are found to be very similar. Up to this
point, all the indices that are computed are weighted or
unweighted bilateral price indices; i.e., the index number
formula depends only on the price and quantity data
pertaining to the two periods whose prices are being
compared. In the final three sections of this chapter,
various indices involving the data pertaining to three or
more periods are computed. In the section starting with
paragraph 19.37, Lowe and Young indices are com-
puted where the data of period 1 are used as quantity or
share weights in conjunction with the price data of
periods 3 to 5, so that the weight reference period is 1
and the price reference period is 3. In the final two
sections, various mid-year indices are computed that are

based on the Lowe and Young formulae. Recall that for
these two index number formulae, the price reference
period does not coincide with the weight reference per-
iod. Thus these indices are not bilateral index number
formulae.

The artificial data set
19.3 The period can be thought of as somewhere

between a year and five years. The trends in the data are
generally more pronounced than would be seen in the
course of a year. The price and quantity data are listed
in Tables 19.1 and 19.2. For convenience, the period t
nominal expenditures, ptqt �Pn

i=1p
t
iq
t
i , are listed along

with the corresponding period t expenditure shares,
sti � ptiqti=ptqt, in Table 19.3.

19.4 The trends that were built into Tables 19.1 to
19.3 are now explained in this paragraph. Think of the
first four commodities as the consumption of various
classes of goods in some economy, while the last two
commodities are the consumption of two classes of ser-
vices. Think of the first good as agricultural consumption;
its quantity fluctuates around 1 and its price also fluc-
tuates around 1.4 The second good is energy consump-
tion; its quantity shows a gently upward trend during the
five periods with some minor fluctuations. Note, how-
ever, that the price of energy fluctuates wildly from
period to period.5 The third good is traditional manu-
factures. Rather high rates of price inflation are assumed
for this commodity for periods 2 and 3 which diminish
to a very low inflation rate by the end of the sample
period.6 The consumption of traditional manufactured
goods is more or less static in the data set. The fourth
commodity is high-technology manufactured goods, for
example computers, video cameras and compact disks.
The demand for these high-technology commodities
grows 12 times over the sample period, while the final
period price is only one-tenth of the first period price.
The fifth commodity is traditional services. The price
trends for this commodity are similar to those of tradi-
tional manufactures, except that the period-to-period

1 ‘‘Asymmetric weights’’ means that the quantity or value weights for
the prices come from only one of the two periods being compared.
2 ‘‘Symmetric weights’’ means that the quantity or value weights for the
prices enter the index number formula in a symmetric or even-handed
way.
3Recall from Chapter 17 that there is a separate Lloyd–Moulton index
for each estimated elasticity of substitution parameter s that is inserted
into the formula.

4Note, however, that the expenditure share of agricultural products
shows a downward trend over time as the economy develops and shifts
into services.
5 This is an example of the price bouncing phenomenon noted by Szulc
(1983). Note that the fluctuations in the price of energy that are built
into the data set are not that unrealistic: in the past four years, the
price of a barrel of crude oil has fluctuated in the range US$12 to
US$40.
6 This corresponds roughly to the experience of most industrialized
countries over the period from 1973 to the mid-1990s. Thus, roughly
five years of price movement are compressed into one of our periods.
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inflation rates are a little higher. The demand for tradi-
tional services, however, grows much more strongly than
for traditional manufactures. The final commodity is
high-technology services, for example telecommunica-
tions, wireless phones, Internet services and stock mar-
ket trading. For this final commodity, the price shows a
very strong downward trend to end up at 20 per cent of
the starting level, while demand increases fivefold. The
movements of prices and quantities in this artificial data
set are more pronounced than the year-to-year move-
ments that would be encountered in a typical country,
but they do illustrate the problem facing compilers of the
consumer price index (CPI); namely, year-to-year price
and quantity movements are far from being proportional
across commodities, so the choice of index number for-
mula will matter.

Early price indices: The Carli,
Jevons, Laspeyres and
Paasche indices

19.5 Every price statistician is familiar with the Las-
peyres indexPL defined by equation (15.5) and thePaasche
index PP defined by equation (15.6) in Chapter 15. These
indices are listed in Table 19.4 along with two unweighted
indices that were considered in previous chapters: theCarli
index defined by equation (16.45) and the Jevons index
defined by equation (16.47) in Chapter 16. The indices in
Table 19.4 compare the prices in period t with the prices
in period 1, that is, they are fixed base indices. Thus
the period t entry for the Carli index, PC, is simply the
arithmetic mean of the six price relatives,

P6
i=1(1=6)

( pti=p
1
i ), while the period t entry for the Jevons index, PJ ,

is the geometric mean of the six price relatives,Q6
i=1( p

t
i=p

1
i )
1=6.

19.6 Note that by period 5, the spread between the
fixed base Laspeyres and Paasche price indices is enor-
mous: PL is equal to 1.4400 while PP is 0.7968, a spread
of 81 per cent. Since both these indices have exactly
the same theoretical justification, it can be seen that
the choice of index number formula matters a lot. The
period 5 entry for the Carli index, 0.9833, falls between
the corresponding Paasche and Laspeyres indices but
the period 5 Jevons index, 0.6324, does not. Note that
the Jevons index is always considerably below the cor-
responding Carli index. This will always be the case
(unless prices are proportional in the two periods under
consideration) because a geometric mean is always equal
to or less than the corresponding arithmetic mean.7

19.7 It is of interest to recalculate the four indices
listed in Table 19.4 using the chain principle rather than
the fixed base principle. The expectation is that the
spread between the Paasche and Laspeyres indices will
be reduced by using the chain principle. These chain
indices are listed in Table 19.5.

19.8 It can be seen comparing Tables 19.4 and 19.5
that chaining eliminated about two-thirds of the spread
between the Paasche and Laspeyres indices. Never-
theless, even the chained Paasche and Laspeyres indices
differ by about 18 per cent in period 5, so the choice of
index number formula still matters. Note that chaining
did not affect the Jevons index. This is an advantage of
the index but the lack of weighting is a fatal flaw.8 Using
the economic approach to index number theory, there is
an expectation that the ‘‘truth’’ lies between the Paasche
and Laspeyres indices. From Table 19.5, it can be seen
that the unweighted Jevons index is far below this
acceptable range. Note that chaining did not affect the
Carli index in a systematic way for the artificial data
set: in periods 3 and 4, the chained Carli is above the
corresponding fixed base Carli; but in period 5, the
chained Carli is below the fixed base Carli.9

Asymmetrically weighted
price indices

19.9 This section contains a systematic comparison
of all of the asymmetrically weighted price indices (with

Table 19.1 Prices for six commodities

Period t pt
1 pt

2 pt
3 pt

4 pt
5 pt

6

1 1.0 1.0 1.0 1.0 1.0 1.0
2 1.2 3.0 1.3 0.7 1.4 0.8
3 1.0 1.0 1.5 0.5 1.7 0.6
4 0.8 0.5 1.6 0.3 1.9 0.4
5 1.0 1.0 1.6 0.1 2.0 0.2

Table 19.2 Quantities for six commodities

Period t qt
1 qt

2 qt
3 qt

4 qt
5 qt

6

1 1.0 1.0 2.0 1.0 4.5 0.5
2 0.8 0.9 1.9 1.3 4.7 0.6
3 1.0 1.1 1.8 3.0 5.0 0.8
4 1.2 1.2 1.9 6.0 5.6 1.3
5 0.9 1.2 2.0 12.0 6.5 2.5

Table 19.3 Expenditures and expenditure shares for six
commodities

Period t pt qt st
1 st

2 st
3 st

4 st
5 st

6

1 10.00 0.1000 0.1000 0.2000 0.1000 0.4500 0.0500
2 14.10 0.0681 0.1915 0.1752 0.0645 0.4667 0.0340
3 15.28 0.0654 0.0720 0.1767 0.0982 0.5563 0.0314
4 17.56 0.0547 0.0342 0.1731 0.1025 0.6059 0.0296
5 20.00 0.0450 0.0600 0.1600 0.0600 0.6500 0.0250

7According to the theorem of the arithmetic and geometric mean; see
Hardy, Littlewood and Pólya (1934, p. 17).
8 The problem with the evenly weighted geometric mean is that the
price declines in high-technology goods and services are given the same
weighting as the price changes in the other four commodities (which
have rising or stationary price changes), but the expenditure shares
of the high-technology commodities remain rather small throughout
the five periods. Thus weighted price indices do not show the rate of
overall price decrease that the unweighted Jevons index shows. These
somewhat negative comments on the use of the unweighted geometric
mean as an index number formula at higher levels of aggregation do
not preclude its use at the very lowest level of aggregation, where a
strong axiomatic justification for the use of this formula can be given.
If probability sampling is used at the lowest level of aggregation, then
the unweighted geometric mean essentially becomes the logarithmic
Laspeyres index.
9 For many data sets, the chained Carli can be expected to be above the
corresponding fixed base Carli; see Szulc (1983).
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the exception of the Lloyd–Moulton index, which will be
considered later). The fixed base indices are listed in
Table 19.6. The fixed base Laspeyres and Paasche indices,
PL and PP, are the same as those indices listed in Table
19.4. The Palgrave index, PPAL, is defined by equation
(16.55). The indices denoted by PGL and PGP are the
geometric Laspeyres and geometric Paasche indices,10

which are special cases of the class of geometric indices
defined by Konüs and Byushgens (1926); see equation
(15.78). For the geometric Laspeyres index, PGL, the
exponent weight ai for the ith price relative is s1i , where s

1
i

is the base period expenditure share for commodity i. The
resulting index should be considered an alternative to the
fixed base Laspeyres index, since both of these indices
make use of the same information set. For the geometric
Paasche index, PGP, the exponent weight for the ith price
relative is sti , where s

t
i is the current period expenditure

shares. Finally, the index PHL is the harmonic Laspeyres
index that was defined by equation (16.59).
19.10 By looking at the period 5 entries in Table 19.6,

it can be seen that the spread between all these fixed base
asymmetrically weighted indices has increased to be even
larger than the earlier spread of 81 per cent between the
fixed base Paasche and Laspeyres indices. In Table 19.6,
the period 5 Palgrave index is about three times as big as
the period 5 harmonic Laspeyres index, PHL. Again, this
illustrates the point that because of the non-proportional
growth of prices and quantities in most economies today,
the choice of index number formula is very important.
19.11 It is possible to explain why certain of the

indices in Table 19.6 are bigger than others. It can be
shown that a weighted arithmetic mean of n numbers is
equal to or greater than the corresponding weighted
geometric mean of the same n numbers, which in turn
is equal to or greater than the corresponding weighted
harmonic mean of the same n numbers.11 It can be

seen that the three indices PPAL, PGP and PP all use
the current period expenditure shares sti to weight
the price relatives ( pti=p

1
i ), but PPAL is a weighted

arithmetic mean of these price relatives, PGP is a
weighted geometric mean of these price relatives and
PP is a weighted harmonic mean of these price rela-
tives. Thus by Schlömilch’s inequality, it must be the
case that:12

PPAL � PGP � PP (19:1)

19.12 Table 19.6 shows that the inequalities (19.1)
hold for each period. It can also be verified that the three
indices PL, PGL and PHL all use the base period expen-
diture shares s1i to weight the price relatives ( p

t
i=p

1
i ), but

PL is a weighted arithmetic mean of these price relatives,
PGL is a weighted geometric mean of these price rela-
tives, and PHL is a weighted harmonic mean of these
price relatives. Thus by Schlömilch’s inequality, it must
be the case that:13

PL � PGL � PHL (19:2)

Table 19.6 shows that the inequalities (19.2) hold for
each period.

19.13 All the asymmetrically weighted price indices
are compared using the chain principle and are listed in
Table 19.7.

19.14 Table 19.7 shows that although the use of the
chain principle dramatically reduced the spread between
the Paasche and Laspeyres indices PP and PL compared
to the corresponding fixed base entries in Table 19.6, the
spread between the highest and lowest asymmetrically
weighted indices in period 5 (the Palgrave index PPAL
and the harmonic Laspeyres index PHL) does not fall as
much: the fixed base spread is 1.6720/0.5556=3.01, while
the corresponding chain spread is 1.7893/0.7299=2.45.

Table 19.5 Chain Laspeyres, Paasche, Carli and Jevons
indices

Period t PL PP PC PJ

1 1.0000 1.0000 1.0000 1.0000
2 1.4200 1.3823 1.4000 1.2419
3 1.3646 1.2740 1.1664 0.9563
4 1.3351 1.2060 0.9236 0.7256
5 1.3306 1.1234 0.9446 0.6325

Table 19.6 Asymmetrically weighted fixed base indices

Period t PPAL PL PGP PGL PP PHL

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.6096 1.4200 1.4846 1.3300 1.3824 1.2542
3 1.4161 1.3450 1.3268 1.2523 1.2031 1.1346
4 1.5317 1.3550 1.3282 1.1331 1.0209 0.8732
5 1.6720 1.4400 1.4153 1.0999 0.7968 0.5556

Table 19.7 Asymmetrically weighted indices using the
chain principle

Period t PPAL PL PGP PGL PP PHL

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.6096 1.4200 1.4846 1.3300 1.3824 1.2542
3 1.6927 1.3646 1.4849 1.1578 1.2740 0.9444
4 1.6993 1.3351 1.4531 1.0968 1.2060 0.8586
5 1.7893 1.3306 1.4556 1.0266 1.1234 0.7299

Table 19.4 The fixed base Laspeyres, Paasche, Carli and
Jevons indices

Period t PL PP PC PJ

1 1.0000 1.0000 1.0000 1.0000
2 1.4200 1.3823 1.4000 1.2419
3 1.3450 1.2031 1.0500 0.9563
4 1.3550 1.0209 0.9167 0.7256
5 1.4400 0.7968 0.9833 0.6324

10Vartia (1978, p. 272) used the terms logarithmic Laspeyres and
logarithmic Paasche, respectively.
11 This follows from Schlömilch’s (1858) inequality; see Hardy, Lit-
tlewood and Pólya (1934, p. 26).

12 These inequalities were noted by Fisher (1922, p. 92) and Vartia
(1978, p. 278).
13 These inequalities were also noted by Fisher (1922, p. 92) and Vartia
(1978, p. 278).
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Thus, in this particular case, the use of the chain prin-
ciple combined with the use of an index number formula
that uses the weights of only one of the two periods being
compared did not lead to a significant narrowing of the
huge differences that these formulae generated using the
fixed base principle. With respect to the Paasche and
Laspeyres formulae, however, chaining did significantly
reduce the spread between these two indices.

19.15 Is there an explanation for the results reported
in the previous paragraph? It can be shown that all six of
the indices that are found in the inequalities (19.1) and
(19.2) approximate each other to the first order around
an equal prices and quantities point. Thus with smooth
trends in the data, it is expected that all the chain indices
will more closely approximate each other than the fixed
base indices because the changes in the individual prices
and quantities are smaller using the chain principle. This
expectation is realized in the case of the Paasche and
Laspeyres indices, but not with the others. For some
of the commodities in the data set, however, the trends
in the prices and quantities are not smooth. In particu-
lar, the prices for the first two commodities (agricultural
products and oil) bounce up and down. As noted by
Szulc (1983), this will tend to cause the chain indices to
have a wider dispersion than their fixed base counter-
parts. In order to determine if it is the bouncing prices
problem that is causing some of the chained indices in
Table 19.7 to diverge from their fixed base counterparts,
all the indices in Tables 19.6 and 19.7 were computed
again but excluding commodities 1 and 2 from the
computations. The results of excluding these bouncing
commodities may be found in Tables 19.8 and 19.9.

19.16 It can be seen that excluding the bouncing
price commodities does cause the chain indices to have a
much narrower spread than their fixed base counter-
parts. Thus, the conclusion is that if the underlying price
and quantity data are subject to reasonably smooth
trends over time, then the use of chain indices will
narrow considerably the dispersion in the asymme-
trically weighted indices. In the next section, index
number formulae that use weights from both periods in
a symmetric or even-handed manner are computed.

Symmetrically weighted indices:
Superlative and other indices

19.17 Symmetrically weighted indices can be decom-
posed into two classes: superlative indices and other
symmetrically weighted indices. Superlative indices have
a close connection to economic theory. As was seen in
paragraphs 17.27 to 17.49 of Chapter 17, a superlative
index is exact for a representation of the consumer’s
preference function or the dual unit cost function that
can provide a second-order approximation to arbitrary
(homothetic) preferences. Four important superlative
indices were considered in previous chapters:

� the Fisher ideal price index PF , defined by equation
(15.12);

� theWalsh price index PW , defined by equation (15.19)
(this price index also corresponds to the quantity
index Q1, defined by equation (17.33) in Chapter 17);

� the T€oornqvist–Theil price index PT , defined by equa-
tion (15.81);

� the implicit Walsh price index PIW that corresponds to
the Walsh quantity index QW defined in Chapter 15
(this is also the index P1 defined by equation (17.38)).

19.18 These four symmetrically weighted superlative
price indices are listed in Table 19.10 using the fixed base
principle. Also listed in Table 19.10 are two symme-
trically weighted (but not superlative) price indices:14

� the Marshall–Edgeworth price index PME , defined in
paragraph 15.18;

� the Drobisch price index PD, defined by equation
(15.12).

19.19 Note that the Drobisch index PD is always
equal to or greater than the corresponding Fisher index
PF . This follows from the fact that the Fisher index is
the geometric mean of the Paasche and Laspeyres indi-
ces, while the Drobisch index is the arithmetic mean of
the Paasche and Laspeyres indices, and an arithmetic
mean is always equal to or greater than the corre-
sponding geometric mean. Comparing the fixed base
asymmetrically weighted indices in Table 19.6 with the
symmetrically weighted indices in Table 19.10, it can be
seen that the spread between the lowest and highest
index in period 5 is much less for the symmetrically
weighted indices. The spread is 1.6720/0.5556=3.01 for
the asymmetrically weighted indices, but only 1.2477/
0.9801=1.27 for the symmetrically weighted indices. If
the comparisons are restricted to the superlative indices
listed for period 5 in Table 19.10, then this spread is
further reduced to 1.2477/1.0712=1.16; i.e., the spread
between the fixed base superlative indices is ‘‘only’’ 16
per cent compared to the fixed base spread between the
Paasche and Laspeyres indices of 81 per cent (1.4400/
0.7968=1.81). There is an expectation that the spread
between the superlative indices will be further reduced
by using the chain principle.

Table 19.8 Asymmetrically weighted fixed base indices for
commodities 3 – 6

Period t PPAL PL PGP PGL PP PHL

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.2877 1.2500 1.2621 1.2169 1.2282 1.1754
3 1.4824 1.4313 1.3879 1.3248 1.2434 1.1741
4 1.6143 1.5312 1.4204 1.3110 1.0811 0.9754
5 1.7508 1.5500 1.4742 1.1264 0.7783 0.5000

Table 19.9 Asymmetrically weighted chained indices for
commodities 3 – 6

Period t PPAL PL PGP PGL PP PHL

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.2877 1.2500 1.2621 1.2169 1.2282 1.1754
3 1.4527 1.4188 1.4029 1.3634 1.3401 1.2953
4 1.5036 1.4640 1.4249 1.3799 1.3276 1.2782
5 1.4729 1.3817 1.3477 1.2337 1.1794 1.0440

14Diewert (1978, p. 897) showed that the Drobisch–Sidgwick–Bowley
price index approximates any superlative index to the second order
around an equal price and quantity point; i.e., PSB is a pseudo-super-
lative index. Straightforward computations show that the Marshall–
Edgeworth index PME is also pseudo-superlative.
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19.20 The symmetrically weighted indices are com-
puted using the chain principle. The results may be
found in Table 19.11.
19.21 A quick glance at Table 19.11 shows that the

combined effect of using both the chain principle as well as
symmetrically weighted indices is to dramatically reduce
the spread between all indices constructed using these two
principles. The spread between all the symmetrically
weighted indices in period 5 is only 1.2333/1.2155=1.015
or 1.5 per cent and the spread between the four super-
lative indices in period 5 is an even smaller 1.2333/
1.2224=1.009, or about 0.1 per cent. The spread
in period 5 between the two most commonly used
superlative indices, the Fisher PF and the Törnqvist PT ,
is truly tiny: 1.2226/1.2224=0.0002.15

19.22 The results listed in Table 19.11 reinforce the
numerical results tabled by Hill (2002) and Diewert
(1978, p. 894); the most commonly used chained super-
lative indices will generally give approximately the same
numerical results.16 In particular, the chained Fisher,
Törnqvist and Walsh indices will generally approximate
each other very closely.

Superlative indices constructed in
two stages of aggregation
19.23 Attention is now directed to the differences

between superlative indices and their counterparts that
are constructed in two stages of aggregation; see para-
graphs 17.55 to 17.60 of Chapter 17 for a discussion of
the issues and a listing of the formulae used. Using the
artificial data set, the first four commodities are com-
bined into a goods aggregate and the last two com-
modities into a services aggregate. In the second stage of

aggregation, the goods and services components will be
aggregated into an all-items index.

19.24 The results for the two-stage aggregation
procedure using period 1 as the fixed base for the Fisher
index PF , the Törnqvist index PT and the Walsh and
implicit Walsh indexes, PW and PIW , are reported in
Table 19.12.

19.25 Table 19.12 shows that the fixed base single
stage superlative indices generally approximate their
fixed base two-stage counterparts fairly closely, with the
exception of the Fisher formula. The divergence between
the single-stage Fisher index PF and its two-stage coun-
terpart PF2S in period 5 is 1.1286/1.0712=1.05 or 5 per
cent. The other divergences are 2 per cent or less.

19.26 Using chain indices, the results of the two-
stage aggregation procedure are reported in Table 19.13.
Again, the single-stage and their two-stage counter-
parts are listed for the Fisher index PF , the Törnqvist
index PT and the Walsh and implicit Walsh indexes, PW
and PIW .

19.27 Table 19.13 shows that the chained single-
stage superlative indices generally approximate their
fixed base two-stage counterparts very closely indeed.
The divergence between the chained single-stage
Törnqvist index PT and its two-stage counterpart PT2S in
period 5 is 1.2300/1.2224=1.006 or 0.6 per cent. The
other divergences are all less than this. Given the large
dispersion in period-to-period price movements, these
two-stage aggregation errors are not large.

Lloyd–Moulton price indices
19.28 The next formula that will be illustrated using

the artificial data set is the Lloyd (1975) and Moulton
(1996) index PLM , defined by equation (17.71). Recall
that this formula requires an estimate for the parameter
s, the elasticity of substitution between all commodities
being aggregated. Recall also that if s equals 0, then the
Lloyd–Moulton index collapses down to the ordinary
Laspeyres index, PL. When s equals 1, the Lloyd–
Moulton index is not defined, but it can be shown that
the limit of PLMs as s approaches 1 is PGL, the geometric
Laspeyres index or the logarithmic Laspeyres index with
base period shares as weights. This index uses the same
basic information as the fixed base Laspeyres index PL,
and so it is a possible alternative index for CPI compilers
to use. As was shown by Shapiro and Wilcox (1997a),17

the Lloyd–Moulton index may be used to approximate a
superlative index using the same information that is used
in the construction of a fixed base Laspeyres index,
provided that an estimate for the parameter s is avail-
able. This methodology will be tested using the artificial
data set. The superlative index that is to be approximated
is the chain Fisher index18 (which approximates the other

Table 19.10 Symmetrically weighted fixed base indices

Period t PT PIW PW PF PD PME

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.4052 1.4015 1.4017 1.4011 1.4012 1.4010
3 1.2890 1.2854 1.2850 1.2721 1.2741 1.2656
4 1.2268 1.2174 1.2193 1.1762 1.1880 1.1438
5 1.2477 1.2206 1.1850 1.0712 1.1184 0.9801

Table 19.11 Symmetrically weighted indices using the
chain principle

Period t PT PIW PW PF PD PME

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.4052 1.4015 1.4017 1.4011 1.4012 1.4010
3 1.3112 1.3203 1.3207 1.3185 1.3193 1.3165
4 1.2624 1.2723 1.2731 1.2689 1.2706 1.2651
5 1.2224 1.2333 1.2304 1.2226 1.2270 1.2155

15 In other periods, the differences were nevertheless larger. On average
over the last four periods, the chain Fisher and the chain Törnqvist
indices differed by 0.0025 percentage points.
16More precisely, the superlative quadratic mean of order r price
indices Pr defined by equation (17.35) and the implicit quadratic mean
of order r price indices Pr* defined by equation (17.32) will generally
closely approximate each other, provided that r is in the interval
0 � r � 2.

17Alterman, Diewert and Feenstra (1999) also used this methodology
in the context of estimating superlative international trade price
indices.
18 Since there is still a considerable amount of dispersion among the
fixed base superlative indices and practically no dispersion between the
chained superlative indices, the Fisher chain index is taken as the target
index rather than any of the fixed base superlative indices.
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chained superlative indices listed in Table 19.11 very
closely). The chained Fisher index PF is listed in column
2 of Table 19.14 along with the fixed base Lloyd–
Moulton indices PLMs for s equal to 0 (this reduces to
the fixed base Laspeyres index PL), 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 and 1 (which is the fixed base geometric index
PGL). Note that the Lloyd–Moulton indices steadily
decrease as the elasticity of substitution s is increased.19

19.29 Table 19.14 shows that no single choice of the
elasticity of substitution s will lead to a Lloyd–Moulton
price index PLMs that will closely approximate the
chained Fisher index PF for periods 2, 3, 4 and 5.
To approximate PF in period 2, it is necessary to choose
s close to 0.1; to approximate PF in period 3, choose s
close to 0.3; to approximate PF in period 4, choose s
between 0.4 and 0.5; and to approximate PF in period 5,

choose s between 0.7 and 0.8.20

19.30 The computations for the Lloyd–Moulton
indices listed in Table 19.14 are now repeated except
that the chain principle is used to construct the Lloyd–
Moulton indices; see Table 19.15. Again, the object is to
approximate the chained Fisher price index PF which is
listed as the second column in Table 19.15. In Table
19.15, PLM0 is the chained Laspeyres index and PLM1 is
the chained geometric Laspeyres or geometric index
using the expenditure shares of the previous period as
weights.

19.31 Table 19.15 shows that again no single choice
of the elasticity of substitution s will lead to a Lloyd–
Moulton price index PLMs that will closely approxi-
mate the chained Fisher index PF for all periods. To
approximate PF in period 2, choose s close to 0.1;
to approximate PF in period 3, choose s close to 0.2;
to approximate PF in period 4, choose s between 0.2
and 0.3; and to approximate PF in period 5, choose s
between 0.3 and 0.4. It should be noted, however, that if
s is chosen to equal to 0.3 and the resulting chained
Lloyd–Moulton index PLM.3 is used to approximate the
chained Fisher index PF, then a much better approx-
imation to PF results than that provided by either the
chained Laspeyres index (see PLM0 in the third column
of Table 19.15) or the fixed base Laspeyres index (see
PLM0 in the third column of Table 19.14).

21 The tenta-
tive conclusions on the use of the Lloyd–Moulton index
to approximate superlative indices that can be drawn
from the above tables are:

� the elasticity of substitution parameter s which
appears in the Lloyd–Moulton formula is unlikely to
remain constant over time, and hence it will be
necessary for statistical agencies to update their esti-
mates of s at regular intervals;

� the use of the Lloyd–Moulton index as a real-time
preliminary estimator for a chained superlative index

Table 19.12 Fixed base superlative single-stage and two-stage indices

Period t PF PF2S PT PT2S PW PW2S PIW PIW2S

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.4011 1.4004 1.4052 1.4052 1.4017 1.4015 1.4015 1.4022
3 1.2721 1.2789 1.2890 1.2872 1.2850 1.2868 1.2854 1.2862
4 1.1762 1.2019 1.2268 1.2243 1.2193 1.2253 1.2174 1.2209
5 1.0712 1.1286 1.2477 1.2441 1.1850 1.2075 1.2206 1.2240

Table 19.13 Chained superlative single-stage and two-stage indices

Period t PF PF2S PT PT2S PW PW2S PIW PIW2S

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.4011 1.4004 1.4052 1.4052 1.4017 1.4015 1.4015 1.4022
3 1.3185 1.3200 1.3112 1.3168 1.3207 1.3202 1.3203 1.3201
4 1.2689 1.2716 1.2624 1.2683 1.2731 1.2728 1.2723 1.2720
5 1.2226 1.2267 1.2224 1.2300 1.2304 1.2313 1.2333 1.2330

Table 19.14 Chained Fisher and fixed base Lloyd –Moulton indices

Period t PF PLM0 PLM:2 PLM :3 PLM:4 PLM :5 PLM:6 PLM:7 PLM :8 PLM1

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.4011 1.4200 1.4005 1.3910 1.3818 1.3727 1.3638 1.3551 1.3466 1.3300
3 1.3185 1.3450 1.3287 1.3201 1.3113 1.3021 1.2927 1.2831 1.2731 1.2523
4 1.2689 1.3550 1.3172 1.2970 1.2759 1.2540 1.2312 1.2077 1.1835 1.1331
5 1.2226 1.4400 1.3940 1.3678 1.3389 1.3073 1.2726 1.2346 1.1932 1.0999

19 This follows from Schlömilch’s (1858) inequality again.
20Unfortunately, for this data set, neither the fixed base Laspeyres
index PL=PLM0 nor the fixed base weighted geometric index
PGL=PLM1 is very close to the chain Fisher index for all periods. For
less extreme data sets, the fixed base Laspeyres and fixed base geo-
metric indices will be closer to the chained Fisher index.

21 For this particular data set, the fixed base or chained geometric
indices using either the expenditure weights of period 1 (see the last
column of Table 19.14) or using the weights of the previous period (see
the last column of Table 19.15) do not approximate the chained Fisher
index very closely. For less extreme data sets, however, the use of
chained Laspeyres or geometric indices may approximate a chained
superlative index adequately.
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seems warranted, provided that the statistical agency
can provide estimates for chained superlative indices
on a delayed basis. The Lloyd–Moulton index would
provide a useful supplement to the traditional fixed
base Laspeyres price index.

Additive percentage change
decompositions for the Fisher
ideal index
19.32 The next formulae to be illustrated using the

artificial data set are the additive percentage change
decompositions for the Fisher ideal index, discussed in
paragraphs 16.62 to 16.73 of Chapter 16.22 The chain
links for the Fisher price index are first decomposed into
additive components using the formulae (16.38) to
(16.40). The results of the decomposition are listed in
Table 19.16. Thus PF � 1 is the percentage change in the
Fisher ideal chain link going from period t� 1 to t, and
the decomposition factor vFiDPi=vFi(P

t
i � pt�1i ) is the

contribution to the total percentage change of the
change in the ith price from pt�1i to pti for i=1, 2, . . . , 6.
19.33 Table 19.16 shows that the price index going

from period 1 to 2 grew about 40 per cent, and the major
contributors to this change were the increases in the
price of commodity 2, energy (18.77 per cent), and in
commodity 5, traditional services (18.4 per cent). The
increase in the price of traditional manufactured goods,
commodity 3, contributed 5.8 per cent to the overall
increase of 40.11 per cent. The decreases in the prices
of high-technology goods (commodity 4) and high-
technology services (commodity 6) offset the other in-
creases by �3.51 per cent and �1.11 per cent going from
period 1 to 2.Going from period 2 to 3, the overall change
in prices was negative: �5.89 per cent. The reader can
read across row 3 of Table 19.16 to see what was the
contribution of the six component price changes to the
overall price change. It is evident that a big price change

in a particular component i, combined with a big expen-
diture share in the two periods under consideration will
lead to a big decomposition factor, vFi.

19.34 The next set of computations to be illustrated
using the artificial data set is the additive percentage
change decomposition for the Fisher ideal index accord-
ing to Van Ijzeren (1987, p. 6), which was mentioned in
footnote 43 of Chapter 16.23 The price counterpart to the
additive decomposition for a quantity index is:

PF ( p
0, p1, q0, q1)=

Pn
i=1

q*Fi p
1
i

Pn
i=1

q*Fi p
0
i

(19:3)

where the reference quantities need to be defined
somehow. Van Ijzeren (1987, p. 6) showed that the fol-
lowing reference weights provide an exact additive
representation for the Fisher ideal price index:

q*Fi � (1=2)q0i+f(1=2)q1i =QF ( p
0, p1, q0, q1)g

for i=1, 2, . . . , 6 (19:4)

where QF is the overall Fisher quantity index. Thus
using the Van Ijzeren quantity weights qFi* , the following
Van Ijzeren additive percentage change decomposition
for the Fisher price index is obtained:

PF ( p
0, p1, q0, q1)� 1=

P6
i=1

q*Fi p
1
i

�P6
i=1

q*Fi p
0
i

� �
� 1

=
X6
i=1

v*Fif p1i � p0i g (19:5)

where the Van Ijzeren weight for commodity i, vFi* , is
defined as

v*Fi � q*Fi
�P6
i=1

q*Fi p
0
i for i=1, 2, . . . , 6 (19:6)

Table 19.15 Chained Fisher and chained Lloyd –Moulton indices

Period t PF PLM0 PLM :2 PLM:3 PLM :4 PLM:5 PLM:6 PLM :7 PLM:8 PLM1

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.4011 1.4200 1.4005 1.3910 1.3818 1.3727 1.3638 1.3551 1.3466 1.3300
3 1.3185 1.3646 1.3242 1.3039 1.2834 1.2628 1.2421 1.2212 1.2002 1.1578
4 1.2689 1.3351 1.2882 1.2646 1.2409 1.2171 1.1932 1.1692 1.1452 1.0968
5 1.2226 1.3306 1.2702 1.2400 1.2097 1.1793 1.1488 1.1183 1.0878 1.0266

Table 19.16 Diewert’s additive percentage change decomposition of the Fisher index

Period t PF � 1 vF1Dp1 vF2Dp2 vF3Dp3 vF4Dp4 vF5Dp5 vF6Dp6

2 0.4011 0.0176 0.1877 0.0580 �0.0351 0.1840 �0.0111
3 �0.0589 �0.0118 �0.1315 0.0246 �0.0274 0.0963 �0.0092
4 �0.0376 �0.0131 �0.0345 0.0111 �0.0523 0.0635 �0.0123
5 �0.0365 0.0112 0.0316 0.0000 �0.0915 0.0316 �0.0194

22 See Diewert (2002a, p. 73).

23 See Reinsdorf, Diewert and Ehemann (2002) for additional infor-
mation on this decomposition.

PRICE INDICES USING AN ARTIFICIAL DATA SET

351



19.35 The chain links for the Fisher price index will
be decomposed into price change components using the
formulae (19.4) to (19.6), listed above. The results of the
decomposition are listed in Table 19.17. Thus PF � 1 is
the percentage change in the Fisher ideal chain link
going from period t� 1 to t and the Van Ijzeren
decomposition factor vFi* Dpi is the contribution to the
total percentage change of the change in the ith price
from pt�1i to for i=1, 2, . . . , 6.

19.36 Comparing the entries in Tables 19.16 and
19.17, it can be seen that the differences between the
Diewert and Van Ijzeren decompositions of the Fisher
price index are very small. The maximum absolute dif-
ference between the vFiDpi and vFi* Dpi is only 0.0018
(about 0.2 percentage points) and the average absolute
difference is 0.0003. This is somewhat surprising given
the very different nature of the two decompositions.24

As was mentioned in footnote 43 of Chapter 16, the
Van Ijzeren decomposition of the chain Fisher quantity
index is used by the Bureau of Economic Analysis in
the United States.25

The Lowe and Young indices
19.37 Recall that the Lowe index was defined by

equation (15.15) in Chapter 15. If it is desired to com-
pare the prices in period t with those in period 0, the
formula for the Lowe index is given by equation (19.7)
below:

PLo( p
1, pt, qb) �

P6
i=1

ptiq
b
i

�P6
i=1

p0i q
b
i t=1, 2, . . . , 5

(19:7)

where qb � [qb1, qb2, . . . , qb6] is the quantity vector per-
taining to a base period b which is prior to period 0,
the base period for prices. This index will be computed
for periods t equal to 3 to 5 for the artificial data set
where the quantity reference period b is taken to be

period 1 and the price reference period 0 is taken to
be period 3; see the column with the heading PLo in
Table 19.18.

19.38 For comparison purposes, the fixed base
Laspeyres, Paasche and Fisher indices are also calcu-
lated for periods 3, 4 and 5, where period 3 is treated as
the base period; see the columns with the headings PL,
PP and PF respectively. The chained Laspeyres, Paasche
and Fisher indices are also calculated for periods 3, 4
and 5, and listed in Table 19.18; see the columns
with the headings PLCH, PPCH and PFCH respectively.
Table 19.18 shows that the Lowe index is higher than all
six of these comparison indices in periods 4 and 5. In
particular, the Lowe index PLo is greater than the fixed
base Laspeyres index PL for periods 4 and 5, which is
consistent with the inequality (15.37) in Chapter 15,
where it was argued that the Lowe index would exceed
the Laspeyres index if there were long-run trends in
prices. Compared with the preferred fixed base or chained
Fisher ideal target indices, PF or PFCH, the Lowe index
has a considerable upward bias for this trending artifi-
cial data set.

19.39 The Young index was defined by equation
(15.48) in Chapter 15 and, for convenience, this defini-
tion is repeated below:

PY ( p
0, pt, sb) �

Pn
i=1

sbi ( p
t
i=p

0
i ) (19:8)

The base period b expenditure shares for the commodities
are the sbi in equation (19.8) and the price reference period
is period 0. This Young index will be computed for
periods t equal to 3 to 5 for the artificial data set, where
the quantity reference period b is taken to be period 1
and the price reference period 0 is taken to be period 3;
see the column with the heading PY in Table 19.18.

19.40 For periods 4 and 5, the Young index is below
the corresponding values for the fixed base Laspeyres
index.26 For period 4, the Young index is 0.9396, which
is below the corresponding value for the Fisher index,
which is 0.9624. However, for period 5, the Young index
is 0.9794, which is above the corresponding values for

Table 19.17 Van Ijzeren’s decomposition of the Fisher price index

Period t PF � 1 vF1* Dp1 vF2* Dp2 vF3* Dp3 vF4* Dp4 vF5* Dp5 vF6* Dp6

2 0.4011 0.0178 0.1882 0.0579 �0.0341 0.1822 �0.0109
3 �0.0589 �0.0117 �0.1302 0.0243 �0.0274 0.0952 �0.0091
4 �0.0376 �0.0130 �0.0342 0.0110 �0.0521 0.0629 �0.0123
5 �0.0365 0.0110 0.0310 0.0000 �0.0904 0.0311 �0.0191

Table 19.18 The Lowe and Young indices, the fixed base Laspeyres, Paasche and Fisher indices, and the chained
Laspeyres, Paasche and Fisher indices

Period t PLo PY PL PP PF PLCH PPCH PFCH

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0074 0.9396 0.9784 0.9466 0.9624 0.9784 0.9466 0.9624
5 1.0706 0.9794 1.0105 0.8457 0.9244 0.9751 0.8818 0.9273

24Reinsdorf, Diewert and Ehemann (2002) nevertheless show that the
terms in the two decompositions approximate each other to the second
order around any point where the two price vectors are equal and
where the two quantity vectors are equal.
25 See Moulton and Seskin (1999), and Ehemann, Katz and Moulton
(2002).

26 It is noted in Chapter 15 that the Young index can be above or below
the corresponding fixed base Laspeyres index, depending on the
responsiveness of expenditure shares to changes in prices.
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the two target Fisher indices, which are 0.9244 for the
fixed base index and 0.9273 for the chained index. Thus,
although the direction of the bias in the Young index is
not always the same, it can be seen that it has substantial
biases for the artificial data set compared to the pre-
ferred target indices.

Mid-year indices based on
the Lowe formula
19.41 Recall the Lowe index formula (19.7). In most

applications of the formula by statistical agencies, the
quantity vector q will be taken from a period that is prior
to the base period for prices, which is period 1 in the
artificial data set. It is also possible, however, to use the
formula as a type of mid-year index, where the reference
quantity vector q could be taken to be an average of the
quantity vectors pertaining to periods 1 to 5. This pos-
sible use of the formula will be explored in the present
section. Thus the first Lowe index, PLo1, sets q in formula
(19.7) equal to q1, the period 1 quantity vector in the
artificial data set. This index turns out to be identical
to the fixed base Laspeyres index PL, which was listed
earlier in Table 19.4. The second Lowe index, PLo2, sets q
in formula (19.7) equal to the average of the period 1 and
2 quantity vectors, (1=2)(q1+q2).27 The third Lowe
index, PLo3, sets q equal to the average of the period 1 to
3 quantity vectors, (1=3)(q1+q2+q3). The fourth Lowe
index, PLo4, sets q equal to the average of the period 1 to
4 quantity vectors, (1=4)(q1+q2+q3+q4). Finally, the
fifth Lowe index, PLo5, sets q equal to the average of
the period 1 to 5 quantity vectors, (1=5)(q1+q2+q3+
q4+q5).28 The resulting five Lowe type indices are listed
in Table 19.19.
19.42 The mid-year index PMY � PLo( p1, pt, q3) was

defined in paragraphs 15.49 to 15.53 of Chapter 15; it is
a Lowe type index with the ‘‘representative’’ quantity
vector q chosen to be q3, the quantity vector that per-
tains to the middle period in the span of periods under
consideration (which is periods 1 to 5 in the numerical
example). It is listed as the seventh column in Table
19.18.29 The mid-year index and the five Lowe indices
are compared to two of the ‘‘best’’ target indices, the
chain Törnqvist and chain Fisher indices, PT and PF
listed in the last two columns of Table 19.19.
19.43 From Table 19.19, it can be seen that none of

the Lowe type indices (or the mid-year index) are very
close to the two target indices (the chain Törnqvist and
chain Fisher) for all periods.30 With less extreme data
sets, however, it is quite possible that the fifth Lowe

index and the mid-year index could form adequate
approximations to the target indices.

19.44 With strong trends in the price data and
normal consumer substitution responses, it is unlikely
that Lowe type indices, based on averages of the
quantity data pertaining to the first few periods in a long
time series of data, will be able to provide an adequate
approximation to a chained superlative index. In gen-
eral, this type of Lowe index will suffer from an upward
bias compared to the target index, as can be seen from
Table 19.19.

Young-type indices
19.45 Recall that the Young index was defined by

equation (15.48) in Chapter 15, or equation (19.8)
above. If it is desired to compare the prices in period t
with those in period 1, the formula for the Young index
is given by equation (19.9):

PY ( p
1, pt, sb) �

P6
i=1

sbi ( p
t
i=p

1
i ) for t=1, 2, . . . , 5 (19:9)

where the expenditure share vector sb � [sb1, . . . sb6] is
‘‘representative’’ for the span of periods under con-
sideration. In most applications of the formula by sta-
tistical agencies, the base period expenditure share vec-
tor sb will be taken from a period that is prior to the base
period for prices, which is period 1 in the artificial data
set. For illustrative purposes, rather than adding new
data to the artificial data set, the reference share vector
sb will be taken to be an average of the expenditure share
vectors pertaining to periods 1 to 5. Thus, the first
Young-type index, PY1, sets s

b in formula (19.9) equal to
s1, the period 1 expenditure share vector in the artificial
data set. This index turns out to be identical to the fixed
base Laspeyres index PL, shown in Table 19.4. The
second Young-type index, PY2, sets s

b in formula (19.9)
equal to the average of the period 1 and 2 share vectors,
(1=2)(s1+s2). The third Young-type index, PY3, sets s

b

equal to the average of the period 1 to 3 share vectors,
(1=3)(s1+s2+s3). The fourth Young-type index, PY4,
sets sb equal to the average of the period 1 to 4 share
vectors, (1=4)(s1+s2+s3+s4). Finally, the fifth Young-
type index, PY5, sets s

b equal to the average of the period
1 to 5 share vectors, (1=5)(s1+s2+s3+s4+s5). The
resulting five Young type indices are listed in Table
19.20 below. These indices are compared to two of the
‘‘best’’ target indices, the chained Törnqvist and chained
Fisher indices, PT and PF listed in the last two columns
of Table 19.20.

19.46 Table 19.20 shows that all the Young-type
indices exhibit a substantial upward bias compared to
the target chain Törnqvist and Fisher indices, PT and
PF. Comparing Table 19.19 with Table 19.20, it can be
seen that the bias in the Young-type indices becomes
bigger as the expenditure shares become more repre-
sentative of all five periods, whereas the upward bias in
the Lowe-type indices tends to become smaller as the
reference quantity vector became more representative of
all periods.

27 This is the Lowe index for the artificial data set, which will probably
be the most comparable to the type of Lowe index currently computed
by statistical agencies.
28 This is Walsh’s (1901, p. 431) multi-year fixed basket index, where
the quantity vector is chosen to be the arithmetic average of the
quantity vectors in the time period under consideration.
29 It can be verified that if there are exact linear time trends in the
quantity data, then the mid-year index PMY will be exactly equal to the
fifth Lowe index, PLo5.
30 The fourth Lowe index PLo4 and the mid-year index PMY appear to
be the closest to the target indices.
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19.47 Note that the Young type indices PY2 to PY5
are all bigger in magnitude than PY1, which is the
ordinary fixed base Laspeyres index. It must be recog-
nized, however, that these Young type indices are not
the type of Young index that is computed by statistical
agencies, in which the weight reference period precedes
the price reference period. As discussed in paragraphs
19.39 to 19.42, this latter type of Young index could be

above or below the corresponding fixed base Laspeyres
index.

19.48 The results of this section and the previous
one can be summarized as follows: it appears to be a
useful exercise to attempt to find quantity weights for
the Lowe formula that are representative for the entire
period covered by the index, but it does not appear to be
useful to do the same for the Young formula.

Table 19.19 The five Lowe indices, the mid-year index, and the Törnqvist and Fisher chain indices

Period t PLo1 PLo2 PLo3 PLo4 PLo5 PMY PT PF

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.4200 1.4010 1.3641 1.3068 1.2267 1.3055 1.4052 1.4011
3 1.3450 1.3366 1.2851 1.2142 1.1234 1.2031 1.3112 1.3185
4 1.3550 1.3485 1.2824 1.1926 1.0801 1.1772 1.2624 1.2689
5 1.4400 1.4252 1.3444 1.2321 1.0868 1.2157 1.2224 1.2226

Table 19.20 The five Young-type indices and the Törnqvist and Fisher chain indices

Period t PY1 PY2 PY3 PY4 PY5 PT PF

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.4200 1.5148 1.4755 1.4409 1.4355 1.4052 1.4011
3 1.3450 1.3567 1.3765 1.3943 1.4144 1.3112 1.3185
4 1.3550 1.3526 1.3917 1.4267 1.4584 1.2624 1.2689
5 1.4400 1.4632 1.4918 1.5173 1.5482 1.2224 1.2226
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