15 BASIC INDEX NUMBER THEORY
I ntroduction
The answer to the question what is the Mean ofargset of magnitudes cannot in general be found,
unless there is given also the object for the sdikehich a mean value is required. There are ag/rkiamls
of average as there are purposes; and we may adenp#t the matter of prices as many purposes as
writers. Hence much vain controversy between persdro are literally at cross purposes. (Edgeworth
(1888, p. 347)).

15.1 The number of physically distinct goods and unityypes of services that consumers
can purchase is in the millions. On the businegs@duction side of the economy, there are
even more commodities that are actively tradeds ©because firms not only produce
commodities for final consumption, but they alsodarce exports and intermediate
commodities that are demanded by other produceraskeollectively also use millions of
imported goods and services, thousands of diffaygres of labour services and hundreds of
thousands of specific types of capital. If we fertdistinguish physical commaodities by their
geographical location or by the season or timeagfttiat they are produced or consumed,
then there are billions of commodities that ardechwithin each year in any advanced
economy. For many purposes, it is necessary to suimenthis vast amount of price and
quantity information into a much smaller set of rmars. The question that this chapter
addresses is: how exactly should the microeconarfacmation involving possibly millions
of prices and quantities be aggregated into a smallmber of price and quantity variables?

This is the basic problem of index numbers.

15.2 Itis possible to pose the index number probletthécontext of microeconomic

theory; i.e., given that we wish to implement saoenomic model based on producer or
consumer theory, what is the “best” method for tmrasing a set of aggregates for the
model? When constructing aggregate prices or digs)thowever, other points of view (that
do not rely on economics) are possible. Some aetladternative points of view are
considered in this chapter and the next. Econopypcaaches are pursued in Chapters 17 and
18.

15.3 The index number problem can be framed as the gmobF decomposing the value of

a well-defined set of transactions in a periodmEtinto an aggregate price term times an



aggregate quantity term. It turns out that thisrapph to the index number problem does not
lead to any useful solutions. So, in paragraphsg tth15.17, the problem of decomposing a
value ratio pertaining to two periods of time ist@omponent that measures the overall
change in prices between the two periods (thisagptice index) times a term that measures
the overall change in quantities between the twapgs (this is the quantity index) is
considered. The simplest price index is a fixedkbag/pe index; i.e., fixed amounts of the
guantities in the value aggregate are chosen amdtkie values of this fixed basket of
guantities at the prices of period 0 and at thegsrof period 1 are calculated. The fixed
basket price index is simply the ratio of these watues where the prices vary but the
quantities are held fixed. Two natural choicestiar fixed basket are the quantities
transacted in the base period, period 0, or thetdigs transacted in the current period,
period 1. These two choices lead to the Laspey&8l() and Paasche (1874) price indices,

respectively.

15.4 Unfortunately, the Paasche and Laspeyres measuagg/eegate price change can
differ, sometimes substantially. Thus in paragrajh48 to 15.32, taking an average of these
two indices to come up with a single measure afgpchange is considered. In paragraphs
15.18 to 15.23, it is argued that the “best” avertagtake is the geometric mean, which is
Irving Fisher’s (1922) ideal price index. In paragins 15.24 to 15.32, instead of averaging
the Paasche and Laspeyres measures of price chakigg,an average of the two baskets is
considered. This fixed basket approach to indexbmirtheory leads to a price index
advocated by Correa Moylan Walsh (1901; 1921a)efdiRed basket approaches are,
however, also possible. Instead of choosing thkdiax period O or 1 (or an average of these
two baskets), it is possible to choose a baskeép#rdains to an entirely different period, say
periodb. In fact, it is typical statistical agency praetio pick a basket that pertains to an
entire year (or even two years) of transactiors year prior to period 0, which is usually a
month. Indices of this type, where the weight refee period differs from the price

reference period, were originally proposed by Jodepwe (1823), and indices of this type
are studied in paragraphs 15.24 to 15.53. Suchesdire also evaluated from the axiomatic

perspective in Chapter 16 and from the economispestive in Chapter 17.

1 Although indices of this type do not appear in itea19, where most of the index number formulagsted
in Chapters 15-18 are illustrated using an aréfidata set, indices where the weight referencegeiiffers
from the price reference period are illustrated atically in Chapter 22, in which the problem of s&aal
commodities is discussed.



15,5 In paragraphs 15.65 to 15.75, another approadietdetermination of thieinctional
form or theformulafor the price index is considered. This approadittisbutable to the
French economist Divisia (1926) and is based orm#isemption that price and quantity data
are available as continuous functions of time. fhe®ry of differentiation is used in order to
decompose the rate of change of a continuous tahe\aggregate into two components that
reflect aggregate price and quantity change. Alghaihe approach of Divisia offers some
insights? it does not offer much guidance to statisticalnmigs in terms of leading to a

definite choice of index number formula.

15.6 In paragraphs 15.76 to 15.97, the advantages aadwintages of usindiaed base
period in the bilateral index number comparisoncamesidered versus always comparing the
current period with the previous period, whichadled thechain systemin the chain system,
alink is an index number comparison of one period wWithgrevious period. These links are

multiplied together in order to make comparisonsranany periods.

The decomposition of value aggr egatesinto price and quantity components

The decomposition of value aggregates and the product test

15.7 A price indexis a measure or function which summarizesctimengein the prices of
many commodities from one situation 0 (a time koo place) to another situation 1. More
specifically, for most practical purposes, a piic#gex can be regarded as a weighted mean of
the change in the relative prices of the commasliieder consideration in the two situations.
To determine a price index, it is necessary to know

» which commodities or items to include in the index;

* how to determine the item prices;

» which transactions that involve these items toudelin the index;

* how to determine the weights and from which soutibese weights should be drawn;

* what formula or type of mean should be used toagesthe selected item relative prices.

All the above questions regarding the definitioragdrice index, except the last, can be

2 |n particular, it can be used to justify the chayistem of index numbers (discussed in paragraples o
15.97).



answered by appealing to the definition of viakie aggregat¢o which the price index

refers. A value aggregatéfor a given collection of items and transactissomputed as:
V=2 Rq
2 51

wherep; represents the price of titl item in national currency unitg, represents the
corresponding quantity transacted in the time pleuieder consideration and the subsadript
identifies theith elementary item in the group mitems that make up the chosen value
aggregatéd/. Included in this definition of a value aggregat¢he specification of the group
of included commaodities (which items to includeylaf the economic agents engaging in
transactions involving those commaodities (whicimsactions to include), as well as
principles of the valuation and time of recordihgttmotivate the behaviour of the economic
agents undertaking the transactions (determinati@mices). The included elementary items,
their valuation (they), the eligibility of the transactions and the iteraights (they) are all
within the domain of definition of the value aggaég) The precise determination of the

andg; is discussed in more detail elsewhere in this rakmu particular in Chapter .

15.8 The value aggregatédefined by equation (15.1) refers to a certairofétansactions
pertaining to a single (unspecified) time periodwNthe same value aggregate for two places
or time periods, periods 0 and 1, is consideredil@sake of convenience, period 0 is called
thebase periocand period 1 is called tlwairrent periodand it is assumed that observations
on the base period price and quantity vectahs,[p:°,...,p."] andd® = [ai’,...,0:]

respectively, have been collectefihe value aggregates in the base and currentdsesi®@

defined in the obvious way as:

VO = z poqo; Vl p q
E = (15.2)

1 1

% Ralph Turvey has noted that some values may fieulifto decompose into unambiguous price and tityan
components. Examples of difficult-to-decomposeaigalare bank charges, gambling expenditures and lif
insurance payments.

4 Note that it is assumed that there are no nevisapgearing commodities in the value aggregatepradgches
to the “new goods problem” and the problem of aotiog for quality change are discussed in ChapteBand
21.



In the previous paragraph, a price index was ddfasea function or measure which
summarizes the change in the prices ofrtkemmodities in the value aggregate from
situation 0 to situation 1. In this paragraplprige indexP(p°,p*,q%,q") along with the
correspondingjuantity indexor volume indexQ(p°p*,a°,q") is defined to be two functions
of the 4 variableg®,p*,d°,q! (these variables describe the prices and quanpgetaining to
the value aggregate for periods 0 and 1) whereettves functions satisfy the following

equatior’

VIV = P(@.p.¢.9)QM .b.4 .Y (15.3)

If there is only one item in the value aggregdtentthe price indeR should collapse down
to the single price ratig,*/p,* and the quantity inde® should collapse down to the single
quantity ratiog:/q.°. In the case of many items, the price inéeg to be interpreted as some

sort of weighted average of the individual priceéos p:*/p:°,..., pn/pr’.

15.9 Thus the first approach to index number theorylmanegarded as the problem of
decomposing the change in a value aggreyate?, into the product of a part that is
attributable tqorice changeP(p°,p',°,gY), and a part that is attributablegoantity change
Q(p°,p*,a°,gY). This approach to the determination of the piickex is the approach that is
taken in the national accounts, where a price insleised to deflate a value ratio in order to
obtain an estimate of quantity change. Thus, mapproach to index number theory, the
primary use for the price index is adeflator. Note that once the functional form for the
price indexP(p°,p*,q%,qY) is known, then the corresponding quantity or waduindex
Q(p°pt, % gY) is completely determined W3; i.e., rearranging equation (15.3):

Q.o . d (V) PGS b .8 H (15.4)

Conversely, if the functional form for the quantitglexQ(p°p*,a%,q) is known, then the
corresponding price indeRX(p°,p*,q%,q) is completely determined 1. Thus using this
deflation approach to index number theory, sepdhaeries for the determination of the
price and quantity indices are not required: ifiei or Q is determined, then the other

function is implicitly determined by the producstequation (15.4).

® The first person to suggest that the price anahiifyandices should be jointly determined in ordieisatisfy
equation (15.3) was Fisher (1911, p. 418). Frid&80, p. 399) called equation (15.3) greduct test



15.10 In the next section, two concrete choices for thieegndexP(p°,p*,a°,g") are
considered and the corresponding quantity ind@g@s,p*,q°,q') that result from using
equation (15.4) are also calculated. These aremhiehoices used most frequently by

national income accountants.

The Laspeyres and Paasche indices

15.11 One of the simplest approaches to the determinafitime price index formula was
described in great detail by Lowe (1823). His apploto measuring the price change
between periods 0 and 1 was to specify an apprdgirepresentative commodity basket,
which is a quantity vectar = [ds,...,0q] that is representative of purchases made duhag t

two periods under consideration, and then calcubegdevel of prices in period 1 relative to

2. P
period O as the ratio of the period 1 cost of thgkiet, =1 , to the period O cost of the

z p’o,

basket, =1 . Thisfixed basket approado the determination of the price index leaves

open the question as to how exactly is the fixexkévector to be chosen.

15.12 As time passed, economists and price statistidanganded a little more precision
with respect to the specification of the basketeeq. There are two natural choices for the
reference basket: the base period commaodity vegtor the current period commodity
vectorg'. These two choices lead to the Laspeyres (187d¢ prdeX P, defined by equation
(15.5) and the Paasche (1874) price ifd&»defined by equation (15.8):

® Lowe (1823, Appendix, p. 95) suggested that thernodity basket vectay should be updated every five
years. Lowe indices are studied in more detailaragraphs 15.24 to 15.53.

" This index was actually introduced and justifigddrobisch (1871a, p. 147) slightly earlier tharspayres.
Laspeyres (1871, p. 305) in fact explicitly acknedded that Drobisch showed him the way forward. e,
the contributions of Drobisch have been forgottmtlie most part by later writers because Drobisch
aggressively pushed for the ratio of two unit valas being the “best” index number formula. WHilis t
formula has some excellent properties where alhtbemmodities being compared have the same unit of
measurement, it is useless when, say, both goatiseawmices are in the index basket.

8 Drobisch (1871b, p. 424) also appears to have theefirst to define explicitly and justify the Pahe price
index formula, but he rejected this formula in favof his preferred formula, the ratio of unit vedy and so
again he did not gain any credit for his early ssjipn of the Paasche formula.

° Note thatP (p°,p',o,0") does not actually depend ghandPs(p°p*,q°.g") does not actually depend gh It
does no harm to include these vectors, howeverttandotation indicates that the reader is in dadm of



=1 (15.5)

P.(p°,p .o d) =2
pr’ql

(15.6)

15.13 The formulae (15.5) and (15.6) can be rewritteanralternative manner that is more

useful for statistical agencies. Define the petiedpenditure share on commoditgs
follows:

s=gdd igg fori=1..,n and t= O,
= (15.7)

Then the Laspeyres index (15.5) can be rewrittefolasvs:*®
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(15.8)

using definitions (15.7). The Laspeyres price inBexan thus be written as an arithmetic
average of the price ratiosp/p°, weighted by base period expenditure shares. The

Laspeyres formula (until very recently) has beedelyi used as the intellectual base for

bilateral index number theory; i.e., the prices gadntities for a value aggregate pertaining to penods are
being compared.

2 This method of rewriting the Laspeyres index (oy fixed basket index) as a share weighted arittmet

average of price ratios is attributable to Fisi&9(, p. 517) (1911, p. 397) (1922, p. 51) and WIS01, p.
506; 1921a, p. 92).



consumer price indices (CPIs) around the worldinfgement it, a statistical agency needs
only to collect information on expenditure shagé@dor the index domain of definition for
the base period 0, and then collect informatioft@&m pricesalone on an ongoing basis.
Thus the Laspeyres CPI can be produced on a tibadis without having quantity

information for the current period

15.14 The Paasche index can also be written in expemrd#iuare and price ratio form as

follows:*

PP(pO’ p, o, d)=

H

(15.9)

using definitions (15.7). The Paasche price indegan thus be written ash@rmonic
average of tha item price ratiosp*/p°, weighted by period 1 (current period) expenditure
shares? The lack of information on current period quaestprevents statistical agencies

from producing Paasche indices on a timely basis.

15.15 The quantity index that corresponds to the Laspgepriee index using the product
test in equation (15.3) is the Paasche quantitgxnde., ifP in equation (15.4) is replaced by

11 This method of rewriting the Paasche index (or fargd basket index) as a share weighted harmorécage
of the price ratios is attributable to Walsh (1901511; 1921a, p. 93) and Fisher (1911, p. 397%-398

12 Note that the derivation in the formula (15.9)whdow harmonic averages arise in index numberyhaca
very natural way.



P. defined by equation (15.5), then the following it index is obtained:

n

2.
QP .d.d) =2
> P’

(15.10)

Note thatQr is the value of the period 1 quantity vector vdlaé the period 1 prices,

2. P
i=1 , divided by the (hypothetical) value of the peribduantity vector valued at the

>

period 1 prices, i . Thus the period 0 and 1 quantity vectors areedht the same set
of prices, the current period pricgs,
15.16 The quantity index that corresponds to the Paagibe index using the product test

(15.3) is the Laspeyres quantity index; i.eR ih equation (15.4) is replaced By defined
by equation (15.6), then the following quantity exds obtained:
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(15.11)

Note thatQ. is the (hypothetical) value of the period 1 quigntector valued at the period O

> plg

prices, =1 , divided by the value of the period 0 quantityteewalued at the period 0

Z poy

prices, =1 . Thus the period 0 and 1 quantity vectors areeght the same set of prices,

the base period priceg’.

15.17 The problem with the Laspeyres and Paasche indetbeuformulae is that, although

they are equally plausible, in general they willggdifferent answers. For most purposes, it is



not satisfactory for the statistical agency to jevwo answers to the questidriwhat is the
“best” overall summary measure of price changdHervalue aggregate over the two periods
in question? In the following section, we considew “best” averages of these two estimates
of price change can be constructed. Before doingveask: What is the “normal”
relationship between the Paasche and Laspeyrees®ilUnder “normal” economic
conditions when the price ratios pertaining totthe situations under consideration are
negatively correlated with the corresponding qugmétios, it can be shown that the
Laspeyres price index will be larger than the cpomding Paasche ind&XA precise
statement of this result is presented in Appen8it ® The divergence betweéh andPp
suggests that if single estimatéor the price change between the two periodsgsired,

then some sort of evenly weighted average of tlspégres and Paasche indices should be
taken as the final estimate of price change betyweeonds 0 and 1. As mentioned above, this
strategy will be pursued in the following sectittrshould, however, be kept in mind that
statistical agencies will not usually have inforimaton current expenditure weights, hence
averages of Paasche and Laspeyres indices candgcpd only on a delayed basis (perhaps

using national accounts information) or not at all.

Symmetric aver ages of fixed basket price indices
The Fisher index as an average of the Paasche asgddyres indices

15.18 As mentioned above, since the Paasche and Laspg@jcesndices are equally

131n principle, instead of averaging the Paaschelasgeyres indices, the statistical agency coduitktbf
providing both (the Paasche index on a delayedpaEhis suggestion would lead to a matrix of price
comparisons between every pair of periods instéadime series of comparisons. Walsh (1901, p) 42%ed
this possibility: “In fact, if we use such direaraparisons at all, we ought to use all possiblesdne

14 peter Hill (1993, p. 383) summarized this inegyads follows:

It can be shown that relationship (13) [i.e., thats greater thaRs] holds whenever the price and
quantity relatives (weighted by values) are negdyicorrelated. Such negative correlation is to be
expected for price takers who react to changeslative prices by substituting goods and servibas t
have become relatively less expensive for thosehidnee become relatively more expensive. In the
vast majority of situations covered by index nunsbémne price and quantity relatives turn out to be
negatively correlated so that Laspeyres indiced sgistematically to record greater increases than
Paasche with the gap between them tending to widlirtime.

15 There is another way to see wiywill often be less thaR\. If the period 0 expenditure shasfsare exactly
equal to the corresponding period 1 expenditureesisd, then by Schlomilch’s (1858) Inequality (see Hardy
Littlewood and Polya (1934, p. 26)), it can be shdhat a weighted harmonic meamaiumbers is equal to or
less than the corresponding arithmetic mean ohthembers and the inequality is strict if thaumbers are not
all equal. If expenditure shares are approximatehstant across periods, then it follows tatvill usually be
less tharP. under these conditions (see paragraphs 15.70.84)15



plausible but often give different estimates of éineount of aggregate price change between
periods 0 and 1, it is useful to consider takingea@nly weighted average of these fixed
basket price indices as a single estimator of mi@nge between the two periods. Examples
of suchsymmetric averagé&sare the arithmetic mean, which leads to the Dabb{¢871b, p.
425), Sidgwick (1883, p. 68) and Bowley (1901, p7®’ index,Pp = (1/2)P. + (1/2)P», and

the geometric mean, which leads to the Fisher (£9Rizal indexPr, defined as

P-(p°, %) ={R (p°, P4, 4 P (p°, P, 0%, )} 2 (15.12)

At this point, the fixed basket approach to inderber theory is transformed into ttest
approachto index number theory; i.e., in order to detemnivhich of these fixed basket
indices or which averages of them might be “bed#’sirablecriteria or testsor properties
are needed for the price index. This topic willjagsued in more detail in the next chapter,
but an introduction to the test approach is provitethe present section because a test is

used to determine which average of the Paascheaspyres indices might be “best”.

15.19 What is the “best” symmetric averageRafandPr to use as a point estimate for the
theoretical cost of living index? It is very de&il@for a price index formula that depends on
the price and quantity vectors pertaining to the periods under consideration to satisfy the

time reversal tesf An index number formul®(p°,p*,d°,q) satisfies this test if

PE.P.d.¢ F1/P@B .p.4 .4 (15.13)

18 For a discussion of the properties of symmetrigrages, see Diewert (1993c). Formally, an averagebinof
two numbers a and b is symmetric if m(a,b) = m(drapther words, the numbers a and b are treatéuki
same manner in the average. An example of a nonsyriecraverage of a and b is (1/4)a + (3/4)b. Inegeh
Walsh (1901, p. 105) argued for a symmetric treatrifehe two periods (or countries) under considien
were to be given equal importance.

"Walsh (1901, p. 99) also suggested the arithnnetian indeXP, (see Diewert (1993a, p. 36) for additional
references to the early history of index numbeotye

18 Bowley (1899, p.641) appears to have been thetfirsuggest the use of the geometric mean ifdedvalsh
(1901, p. 428-429) also suggested this index widlamenting on the big differences between the Lasge
and Paasche indices in one of his numerical examfilde figures in columns (2) [Laspeyres] and (3)
[Paasche] are, singly, extravagant and absurdtHaue is order in their extravagance; for the nessrof their
means to the more truthful results shows that #teyddle the true course, the one varying on tleesate about
as the other does on the other.”

19 See Diewert (1992a, p. 218) for early referenoehis test. If we want the price index to haveshme
property as a single price ratio, then it is impottto satisfy the time reversal test. Howeverepgoints of
view are possible. For example, we may want toouseprice index for compensation purposes, in wicgbe
satisfaction of the time reversal test may notdoargortant.



i.e., if the period 0 and period 1 price and qugrttata are interchanged, and then the index
number formula is evaluated, then this new inBgx,p°,g*,q°) is equal to the reciprocal of

the original indeXP(p°,p*,c°,g'). This is a property that is satisfied by a singiee ratio, and

it seems desirable that the measure of aggregategirange should also satisfy this property
so that it does not matter which period is chosetina base period. Put another way, the
index number comparison between any two pointgsred should not depend on the choice of
which period we regard as the base period: if thergperiod is chosen as the base period,
then the new index number should simply equal ¢egrocal of the original index. It should

be noted that the Laspeyres and Paasche pricesmdanot satisfy this time reversal

property.

15.20 Having defined what it means for a price indreto satisfy the time reversal test, then
it is possible to establish the following restiThe Fisher ideal price index defined by
equation (15.12) is thenly index that is a homogenedtusymmetric average of the
Laspeyres and Paasche price indi€esndPe, and satisfies the time reversal test (15.13).
The Fisher ideal price index thus emerges as psithap‘best” evenly weighted average of

the Paasche and Laspeyres price indices.

15.21 Itis interesting to note that thiymmetric basket approath index number theory
dates back to one of the early pioneers of indewbar theory, Arthur L. Bowley, as the

following quotations indicate:
If [the Paasche index] and [the Laspeyres indextlose together there is no further difficultythigy
differ by much they may be regarded as inferior sungerior limits of the index number, which may be

estimated as their arithmetic mean ... as a first@pmation (Bowley (1901, p. 227)).

When estimating the factor necessary for the ctorof a change found in money wages to obtain
the change in real wages, statisticians have ret bentent to follow Method Il only [to calculate a
Laspeyres price index], but have worked the proldekwards [to calculate a Paasche price index] as
well as forwards. ... They have then taken the amtiengeometric or harmonic mean of the two
numbers so found (Bowley (1919, p. 348)).

20 See Diewert (1997, p. 138))

2L An average or mean of two numbarandb, m(a,b),is homogeneoui when both numbera andb are
multiplied by a positive numbet, then the mean is also multiplied Byi.e., m satisfies the following property:
m(Aa,Ab) = Am(a,b)

2 Fisher (1911, p. 417-418; 1922) also consideredatithmetic, geometric and harmonic averageseof th



15.22 The quantity index that corresponds to the Fishieepndex using the product test
(15.3) is the Fisher quantity index; i.e.Piin equation (15.4) is replaced By defined by
equation (15.12), the following quantity index lstained:

Q- (p°, % A ={Q (p°, p1,0°, a1 Qs (p°, P10, )} (15.14)

Thus the Fisher quantity index is equal to the sgjuaot of the product of the Laspeyres and
Paasche quantity indices. It should also be ndtatX-(p°,p*,q%,q") = P=(q%,q%,p%pY); i.e., if
the role of prices and quantities is interchangetthé Fisher price index formula, then the

Fisher quantity index is obtained.

15.23 Rather than take a symmetric average of the twi ffiiaed basket price indices
pertaining to two situation®. andP%, it is also possible to return to Lowe’s basic

formulation and choose the basket vectto be a symmetric average of the base and current
period basket vectorg® andg*. This approach to index number theory is pursoetie

following section.

The Walsh index and the theory of the “pure” prindex

15.24 Price statisticians tend to be very comfortabléaitconcept of the price index that is
based on pricing out a constant “representativekéiaof commoditiesy = (0,02, ... ,0n), at

the prices of periods 0 and®,= (p:°,p2,...,p0) andp' = (pit,p2t,....pnt) respectively. Price
statisticians refer to this type of index afixad basket indear apure price inde¥ and it

corresponds to Sir George H. Knibbs’s (1924, p.ut@quivocal price indeX Since Lowe

Paasche and Laspeyres indices.

Z Fisher (1922, p. 72) said tHatandQ satisfied thdactor reversal tesif Q(p°p*,o°.q%) = P(c®,.q,p°,p') andP
andQ satisfied the product test (15.3) as well.

24 See section 7 in Diewert (2001).

% “Suppose however that, for each commodity=@, then the fractiort.(P Q) / X (PQ), viz., the ratio of
aggregate value for the second unit-period to fuygegate value for the first unit-period is no lengierely a
ratio of totals, it also shows unequivocally thfeef of the change in price. Thus it is an uneqc@rice
index for the quantitatively unchanged complexahmodities, A, B, C, etc.

It is obvious that if the quantities were diffint on the two occasions, and if at the sametti@@rices had
been unchanged, the preceding formula would be¢ofR€)) / 2 (PQ). It would still be the ratio of the
aggregate value for the second unit-period to uygegate value for the first unit period. But itwla be also
more than this. It would show in a generalized Weyratio of the quantities on the two occasiomsusTit is an
unequivocal quantity index for the complex of conalities, unchanged as to price and differing onlyoas
quantity.



(1823) was the first person to describe systenmibtittas type of index, it is referred to as a
Lowe index. Thus the general functional form fce tlowe price indexs
Ro(P . P =2 /a/> Ba=2 L0 D
i=1 i=1 i1 (15.15)
where the (hypotheticallybrid expenditure shares$® corresponding to the quantity weights
vector g are defined by:

s =Qq Zn: fq for i=1,2,..n
= (15.16)

15.25 The main reason why price statisticians might prafeember of the family of Lowe

or fixed basket price indices defined by equatith 15) is that the fixed basket concept is
easy to explain to the public. Note that the Laspewand Paasche indices are special cases of
the pure price concept if we choage ¢° (which leads to the Laspeyres index) or if we
chooseg = g* (which leads to the Paasche ind&xjhe practical problem of picking

remains to be resolved, and that is the probletviiibbe addressed in this section.

15.26 It should be noted that Walsh (1901, p. 105; 1921s) saw the price index number

problem in the above framework:

Commodities are to be weighted according to thmepadrtance, or their full values. But the problem of
axiometry always involves at least two periods.r€lis a first period, and there is a second period
which is compared with it. Price variations havieetaplace between the two, and these are to be
averaged to get the amount of their variation ahale. But the weights of the commodities at the
second period are apt to be different from theiighvis at the first period. Which weights, then, tre
right ones—those of the first period? Or thosehefsecond? Or should there be a combination of the
two sets? There is no reason for preferring eithefirst or the second. Then the combination ahbo

would seem to be the proper answer. And this coattain itself involves an averaging of the weights

Let it be noted that the mere algebraic forrtheke expressions shows at once the logic of thelem of
finding these two indices is identical” (Knibbs 2 p. 43—-44)).

28 Note that Fisher (1922, p. 53) used the terminplwggighted by a hybrid value”, while Walsh (1932,657)
used the term “hybrid weights”.

n
— 0L 0l
s =p’a/) P’
2" Note that théth share defined by equation (15.16) in this caghe hybrid shar i=1 ,
which uses the prices of period 0 and the quastitfgperiod 1.



of the two period¢Walsh (1921a, p. 90)).
Walsh’s suggestion will be followed and thus ttrequantity weightg;, is restricted to be an

average omeanof the base period quantiy and the current period quantity for commodity
i gt, saym(qg°,g?h), fori = 1,2,...,n.28 Under this assumption, the Lowe price index (15.15

becomes:

> pim(a’,q;)
P,(p% p"a°,q") =2 :
2. pim(@;.aj)
= (15.17)

15.27 In order to determine the functional form for thean functiorm, it is necessary to
impose soméestsor axiomson the pure price index defined by equation (16.Ag above,
we ask thaPy, satisfy theime reversal test15.13). Under this hypothesis, it is immediately
obvious that the mean function m must lsymmetric mea&f i.e.,m must satisfy the
following property:m(a,b)= m(b,a)for alla > 0 andb > 0. This assumption still does not pin
down the functional form for the pure price indetided by equation (15.17). For example,
the functionm(a,b)could be tharithmetic mean(1/2)a + (1/2), in which case equation
(15.17) reduces to thdarshall (1887) andedgeworth(1925)price index R, which was the
pure price index preferred by Knibbs (1924, p. 56):

n

> p{(e+a)/2)

Pe( P, B f, )=
> p{(a+q)123

= (15.18)

15.28 On the other hand, the functiom(a,b)could be th@eometric mear(ab)*?, in which
case equation (15.17) reduces to\talsh(1901, p. 398; 1921a, p. 9ice index Py:*°

2 Note that we have chosen the mean funatitm®,gt) to be the same for each iténWe assume than(a,b)
has the following two propertiem(a,b)is a positive and continuous function, defineddibipositive numbera
andb andm(a,a)=afor alla> 0.

29 For more on symmetric means, see Diewert (199326)).
30Walsh (19214, p. 103) endordaglas being the best index number formula: “We haenseason to believe

formula 6 better than formula 7. Perhaps formuisitBe best of the rest, but between it and N@ndb8 it
would be difficult to decide with assurance”. Hisrhula 6 isPw defined by equation (15.19) and his 9 is the



anp.l qQ’q
R.(p” P o, d)=t——

> piyd
j=1

3

(15.19)

15.29 There are many other possibilities for the meartion m, including the mean of
orderr, [(1/2)a" + (1/2)%" ]*" for r # 0. Obviously, in order to completely determine the
functional form for the pure price indé€X,, it is necessary to impose at least one additional

test or axiom ofPLo(p°,pt,a°qb).

15.30 There is a potential problem with the use of thgdxabrth-Marshall price index
(15.18) that has been noticed in the context afguhie formula to make international
comparisons of prices. If the price levels of ayarge country are compared to the price
levels of a small country using formula (15.18rnhhe quantity vector of the large country
may totally overwhelm the influence of the quantigctor corresponding to the small
country® In technical terms, the Edgeworth-Marshall formislaot homogeneous of degree
0 in the components of botf andq'. To prevent this problem from occurring in the oge
the pure price indeR«(p°p*,q°,q") defined by equation (15.17), it is asked thatsatisfy the

following invariance to proportional changes in current quiéias test®

PP’ P A= P (P, B d, d foral 8, p, § § andald > | (15.20)

The two tests, the time reversal test (15.13) hedrvariance test (15.20), make it possible
to determine the precise functional form for theepprice indeXP,, defined by formula
(15.17): the pure price indé¥ must be the Walsh inddXy defined by formula (15.19F%.

15.31 In order to be of practical use by statistical ages) an index number formula must

Fisher ideal defined by equation (15.12). Tdalsh quantity indexQw(p®p*.o’.0") is defined a®w(q,g*p°%pY);
i.e., the role of prices and quantities in defonit(15.19) is interchanged. If the Walsh quantiigeix is used to
deflate the value ratio, an implicit price indelstained, which is Walsh’s formula 8.

%1 This is not likely to be a severe problem in tinget series context, however, where the changeantify
vectors going from one period to the next is small.

%2 This is the terminology used by Diewert (1992a215); Vogt (1980) was the first to propose this.te

3 See section 7 in Diewert (2001).



be able to be expressed as a function of the lassdpexpenditure shares, the current
period expenditure shares, and then price ratiosp/p°. The Walsh price index defined by
the formula (15.19) can be rewritten in the follag/format:

LR

Ru(P’, P o, )=

= (15.21)

15.32 The approach taken to index number theory in thisien was to consider averages
of various fixed basket type price indices. Thetfapproach was to take an even-handed
average of the two primary fixed basket indices:lthspeyres and Paasche price indices.
These two primary indices are based on pricingloeibaskets that pertain to the two periods
(or locations) under consideration. Taking an ayeraf them led to the Fisher ideal price
indexPr defined by equation (15.12). The second approashtwaverage the basket
quantity weights and then price out this averagekdiaat the prices pertaining to the two
situations under consideration. This approachdeti¢ Walsh price inde®w, defined by
equation (15.19). Both of these indices can beevrias a function of the base period
expenditure shares?, the current period expenditure shasgsand then price ratiosp/p°.
Assuming that the statistical agency has infornmatio these three sets of variables, which
index should be used? Experience with normal tienees data has shown that these two
indices will not differ substantially and thussta matter of indifference which of these

indices is used in practiééBoth of these indices are exampleswperlative indiceswvhich



are defined in Chapter 17. Note, however, that bbthese indices treat the data pertaining
to the two situations in symmetriananner. Hil* commented on superlative price indices

and the importance of a symmetric treatment ofitita as follows:

Thus economic theory suggests that, in generagimangtric index that assigns equal weight to the two
situations being compared is to be preferred toeeithe Laspeyres or Paasche indices on their own.
The precise choice of superlative index—whethehétisTérngvist or other superlative index—may be
of only secondary importance as all the symmetiidces are likely to approximate each other, ard th
underlying theoretic index fairly closely, at leadten the index number spread between the Laspeyres

and Paasche is not very great (Hill (1993, p. 384))

Annual weightsand monthly priceindices

The Lowe index with monthly prices and annual yese quantities

15.33 Itis now necessary to discuss a major practiaablpm with the above theory of
basket type indices. Up to now, it has been assuh@dhe quantity vectar= (Qi,0z, ... ,0n)
that appeared in the definition of the Lowe ind@x(p°,p*,g) defined by equation (15.15), is
either the base period quantity veagbor the current period quantity vectgror an average
of these two quantity vectors. In fact, in termsofual statistical agency practice, the
guantity vectoq is usually taken to be an annual quantity vedtat tefers to dase year
sayb, that is prior to the base period for the prigesjod 0. Typically, a statistical agency
will produce a consumer price index at a monthlguaarterly frequency, but for the sake of
argument a monthly frequency will be assumed intidliows. Thus a typical price index
will have the formP(p°p',q°), wherep® is the price vector pertaining to the base period
month for prices, month @/ is the price vector pertaining to the current periaonth for
prices, say month) andqP is a reference basket quantity vector that refethe base yedr,
which is equal to or prior to month®*®Note that this Lowe indeR o(p°p',g°) is nota true
Laspeyres index (because the annual quantity vgttemot equal to the monthly quantity

vectorg® in general}’

% Diewert (1978, pp. 887-889) showed that theseihdixes will approximate each other to the secamigio
around an equal price and quantity point. Thusitomal time series data where prices and quantbesot
change much going from the base period to the ctuperiod, the indices will approximate each otipgite
closely.

% See also Hill (1988).
% Month 0 is called the price reference period agalrlp is called the weight reference period.
37 Triplett (1981, p. 12) defined the Lowe index lica it a Laspeyres index, and calling the indeatthas the

weight reference period equal to the price refezgreriod, a pure Laspeyres index. Balk (1980c9p. 6
however, asserted that although the Lowe indexk flseofixed base type; it is not a Laspeyres pinckex.



15.34 The question is: why do statistical agenciespick the reference quantity vectpm
the Lowe formula to be the monthly quantity veafothat pertains to transactions in month 0
(so that the index would reduce to an ordinary egsps price index)? There are two main
reasons why this is not done:

* Most economies are subject to seasonal fluctugtaom$ so picking the quantity
vector of month 0 as the reference quantity vefioall months of the year would
not be representative of transactions made thraitghe year.

* Monthly household quantity or expenditure weights asually collected by the
statistical agency using a household expenditungeguwvith a relatively small
sample. Hence the resulting weights are usualljestulo very large sampling errors
and so standard practice is to average these mahenditure or quantity weights
over an entire year (or in some cases, over seyegast), in an attempt to reduce
these sampling errors.

The index number problems that are caused by selasmmthly weights are studied in more
detail in Chapter 22. For now, it can be arguedl it use of annual weights in a monthly

index number formula is simply a method for dealvith the seasonality probleff.

15.35 One problem with using annual weights correspontbrg perhaps distant year in the
context of a monthly consumer price index must ded at this point: if there are systematic
(but divergent) trends in commodity prices and letwadds increase their purchases of
commodities that decline (relatively) in price aeduce their purchases of commaodities that
increase (relatively) in price, then the use ofatis quantity weights will tend to lead to an
upward bias in this Lowe index compared to one tisatd more current weights, as will be
shown below. This observation suggests that statisigencies should strive to get up-to-

date weights on an ongoing basis.

Triplett also noted the hybrid share representdtiothe Lowe index defined by equations (15.15) éY5.16).
Triplett noted that the ratio of two Lowe indicesing the same quantity weights was also a Lowexinde
Baldwin (1990, p. 255) called the Lowe indexaamual basket index

3 |n fact, the use of the Lowe ind@x,(p°%p',a") in the context of seasonal commodities correspeadBean
and Stine’s (1924, p. 31) Type A index number fdanBean and Stine made three additional suggestan
price indices in the context of seasonal commalifideir contributions are evaluated in Chapter 22.



15.36 It is useful to explain how the annual quantityteegP® could be obtained from
monthly expenditures on each commodity during thesen base yeér Let the month m
expenditure of the reference population in the lyaseb for commodityi bevi®™and let the
corresponding price and quantity s&™ andqg®™ respectively. Of course, value, price and

quantity for each commodity are related by theofwlhg equations:

bm _ bm.bhm | = =
VW= g where i= 1..n andn= 1, , (15.22)

For each commaoditi; the annual totaly® can be obtained by price deflating monthly values

and summing over months in the base yeas follows:

b 12 Vb,m 12 bm .
qi:z'Tm:Zq' : i=1,..n
el (15.23)

where equation (15.22) was used to derive the skequation in (15.23). In practice, the
above equations will be evaluated using aggregateralitures over closely related
commodities and the prigg”™ will be the monthm price index for this elementary

commodity group in yearb relative to the first month of year

15.37 For some purposes, it is also useful to have arpricds by commodity to match up
with the annual quantities defined by equationZ3k.Following national income accounting
conventions, a reasonalflericep® to match up with the annual quantity is the value of
total consumption of commodityin yearb divided byg?".

Thus we have:

% These annual commodity prices are essentiallyvatite prices. Under conditions of high inflatidie
annual prices defined by equation (15.24) may ngéo be “reasonable” or representative of pricemduhe
entire base year because the expenditures inrtalenfionths of the high inflation year will be sonfew
artificially blown up by general inflation. Underdse conditions, the annual prices and annual catityno
expenditure shares should be interpreted with gaukor more on dealing with situations where theiggh
inflation within a year, see Hill (1996).



12
=2/ = 1n,
m=1
12
Zvib,m
Y, =
v/
m=1
12 -1
= {Z 5"( p“”)‘l}
m=1

usiny5s.23)

(15.24)

where the share of annual expenditure on commaoditynonth m of the base year is

b,m

v : i= 1,.n

12
b,k
>V
k=1

(15.25)

Thus the annual base year price for commaddlity, turns out to be a monthly expenditure
weightedharmonic meamf the monthly prices for commodityn the base yeap®?, p°?...,

pib,lZ

Using the annual commodity prices for the base geéined by equation (15.24), a vector of
these prices can be definedps [p.”,...,p."]. Using this definition, the Lowe index
PLo(p%p',q°) can be expressed as a ratio of two Laspeyresdadivhere the price vectgt

plays the role of base period prices in each ofwleeLaspeyres indices:
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PEHCRED

=P.(p" p',a°)/P.(p", P°,q") (15.26)

where the Laspeyres formuPa was defined by equation (15.5). Thus the abovatsmu
shows that the Lowe monthly price index comparhmegprices of month O to those of month
t using the quantities of base yéaas weightsP.(p%p',dP), is equal to the Laspeyres index
that compares the prices of montio those of yea, P (p°,p',dP), divided by the Laspeyres
index that compares the prices of month 0 to tlebsearb, P.(p°,p°%q°). Note that the
Laspeyres index in the numerator can be calculated base year commodity expenditure
sharess®, are known along with the price ratios that corapthe prices of commodifyin
month t,p, with the corresponding annual average pricebérbase year Ip’. The

Laspeyres index in the denominator can be calaliibtbe base year commodity expenditure
sharess®, are known along with the price ratios that corapthe prices of commodifyin

month 0,p°, with the corresponding annual average pricebérbase yeds, pP.

15.39 There is another convenient formula for evaluativegLowe indexPL.(p°p',cf), and

that is to use the hybrid weights formula (15.18%he present context, the formula becomes:

n

> rid il(p‘/p‘))r?ﬁ:i(ajsm

i=1

Ro(p’. B, d)==4 ; _
Zploqb Z poqo i=1

=1 =1 (15.27)

where the hybrid weights™ using the prices of month 0 and the quantitiegeafrb are
defined by
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(15.28)

The second equation in (15.28) shows how the beaeexpenditureg°qP, can be

multiplied by the commaodity price indicgs”/p®, in order to calculate the hybrid shares.

15.40 There is one additional formula for the Lowe index(p°,p',q°), that will be

exhibited. Note that the Laspeyres decompositiah®fiowe index defined by the third term
in equation (15.26) involves the long-term pricatiges,p'/p®, which compare the prices in
montht, p, with the possibly distant base year priggs,and that the hybrid share
decomposition of the Lowe index defined by thedtiérm in equation (15.27) involves the
long-term monthly price relativep,/pi®, which compare the prices in montip, with the

base month pricep’. Both of these formulae are unsatisfactory in ficacdecause of
sample attrition: each month, a substantial fractibcommodities disappears from the
marketplace. Thus it is useful to have a formutaufodating the previous month’s price
index using just month-over-month price relativesother words, long-term price relatives
disappear at too fast a rate to make it viablgrattice, to base an index number formula on
their use. The Lowe index for montthl, P.o(p%p™*,g°), can be written in terms of the Lowe

index for month, PLo(p°p',g°), and an updating factor as follows:
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= PLo(pOI pt)qb) Z( It ]Stb:|
L= Py (15.29)
where the hybrid weights® are defined by:
t b
e=_hd . i= 1.0
2P
=L (15.30)

Thus the required updating factor, going from mdrnthmontht+1, is the chain link index

Zs (p™/p!)

, Which uses the hybrid share weiggtscorresponding to monthand base

yearb.

15.41 The Lowe indeXP.o(p° p', °) can be regarded as an approximation to the andina
Laspeyres index® (p°, p', q°), that compares the prices of the base mongh, @) those of
montht, p', using the quantity vectors of monthgf, as weights. It turns out that there is a

relatively simple formula that relates these twaid¢es. In order to explain this formula, it is



first necessary to make a few definitions. Defimeith price relative between month 0 and

month as
=t/ o i =
r=pl/p; = 1,.n (15.31)

The ordinary Laspeyres price index, going from rhdhtot, can be defined in terms of these

price relatives as follows:

i pitqo Z(EIOJ ploqo
P(P, . d)si2— =122
DN e I e i
i=1 i=1

n

(oo

= (15.32)
where the month 0 expenditure sha&are defined as follows:
00
soz—np'q ; i= 1,.n
2P
= (15.33)

15.42 Define theith quantity relative; as the ratio of the quantity of commoditysed in

the base yed, g®, to the quantity used in monthd¥, as follows:
t=q’/q"; i= 1,n (15.34)
The Laspeyres quantity inde®,(c¢, o°, p°), that compares quantities in ydarP, to the

corresponding quantities in monthdd, using the prices of month , as weights can be

defined as a weighted average of the quantitysatas follows:
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=Zi”213°; ing definition (15.34
=t* (15.35)

15.43 Using formula (A15.2.4) in Appendix 15.2 to thisagter, the relationship between
the Lowe indexXPo(p°p',g°) that uses the quantities of ydeas weights to compare the prices
of montht to month 0, and the corresponding ordinary LasgeirdexP, (p°,p',q°) that uses
the quantities of month 0 as weights is the folloyvone:

n

2nd
I:)Lo( pO’ pt1 qb)E =
> e

> (1 -1, IS’
=R(p’, P, )+ 2

Q(d, o, P) (15.36)

Thus the Lowe price index using the quantitiesezfrp as weightsP.(p°p',°), is equal to

the usual Laspeyres index using the quantitiesarftm0 as weight$(p°%p",q%), plus a

n

Z(ri _r*)(ti —t*)SO
covariance ter i= between the price relativess p/pi° and the quantity
relativest; = g°/q°, divided by the Laspeyres quantity ind@xc’, ¢°, p°) between month 0
and base yedr.

15.44 Formula (15.36) shows that the Lowe price index eaincide with the Laspeyres
price index if the covariance or correlation betavé®e month 0 to price relatives; = p'/p?°

and the month 0 to yearquantity relatives = g°q° is zero. Note that this covariance will



be zero under three different sets of conditions:
» if the montht prices are proportional to the month O priceshso allr; =r*;
» if the base yedp quantities are proportional to the month 0 queastiso that all; =
t*;
« if the distribution of the relative pricesis independent of the distribution of the
relative quantities.
The first two conditions are unlikely to hold emgally, but the third is possible, at least
approximately, if consumers do not systematicdtigirge their purchasing habits in response

to changes in relative prices.

15.45 If this covariance in formula (15.36) is negatitieen the Lowe index will be less than
the Laspeyres index. Finally, if the covariancpasitive, then the Lowe index will be greater
than the Laspeyres index. Although the sign andnmade of the covariance term,

Z(ri _r*)(ti _t*)sﬁo
i=1 , IS ultimately an empirical matter, it is possibdemake some
reasonable conjectures about its likely sign. éfllase year b precedes the price reference
month O and there are long-term trends in prides) it is likely that this covariance is

positive and hence that the Lowe index will excdedcorresponding Laspeyres price

index#°i.e.,

(9B 4)> R(E. B, d) 537

To see why the covariance is likely to be positsugpose that there is a long-term upward
trend in the price of commaodityso that; — r* = (p'/p) — r* is positive. With normal
consumer substitution resporSeg'/q° less an average quantity change of this typéédyi

to be negative, or, upon taking reciprocgl¥g less an average quantity change of this

40 For this relationship to hold, it is also neceggarassume that households have normal substitaffects in
response to these long-term trends in prices;fi@.commodity increases (relatively) in price, @donsumption
will decline (relatively) and if a commodity decees relatively in price, its consumption will inase
relatively.

41 Walsh (1901, pp. 281-282) was well aware of corexusnbstitution effects, as can be seen in theviatig
comment which noted the basic problem with a fikadket index that uses the quantity weights ofiglsi
period: “The argument made by the arithmetic avistagipposes that we buy the same quantities of @lass
at both periods in spite of the variation in thaiices, which we rarely, if ever, do. As a rougbpmsition, we —
a community — generally spend more on articleshihge risen in price and get less of them, anddsfess on
articles that have fallen in price and get moréhem.”



(reciprocal) type is likely to be positive. Butlife long-term upward trend in prices has
persisted back to the base ybathent; — t* = (/g — t* is also likely to be positive.

Hence, the covariance will be positive under thasmimstances. Moreover, the more distant
is the base yedrfrom the base month 0, the bigger the residuals* are likely to be and

the bigger will be the positive covariance. Simytathe more distant is the current period
montht from the base period month 0, the bigger the uadsat; — r* are likely to be and the
bigger will be the positive covariance. Thus, uniherassumptions that there are long-term
trends in prices and normal consumer substitugspaonses, the Lowe index will normally

be greater than the corresponding Laspeyres index.

15.46 Define the Paasche index between months G asdollows:

2. Pq
P.(p°, B, d)="2
>.pq

= (15.38)

—

As discussed in paragraphs 15.18 to 15.23, a rebotarget index to measure the price
change going from month 0 tés some sort of symmetric average of the Paasulexi
Pe(p%p',d), defined by formula (15.38), and the correspogdiaspeyres index.(p°,p',a°),
defined by formula (15.32). Adapting equation (AIL5) in Appendix 15.1, the relationship

between the Paasche and Laspeyres indices canttanas follows:

(1O - u)s”
P.(p% p',a") =P.(p° p'.q°) +-=

Q.(a’.a", p°) (15.39)

where the price relativas= p'/p° are defined by equation (15.31) and their sharigivted

average* by equation (15.32) and thg u* and Q. are defined as follows:
u=q/d; i= 1,.n (15.40)

u”=>"su =Q.(q°.q', p°)

i=L (15.41)
and the month 0 expenditure shagésare defined by the identity (15.33). Thufsis equal to
the Laspeyres quantity index between months (t.ahdis means that the Paasche price



index that uses the quantities of monh#s weightsPs(p°,p',q"), is equal to the usual
Laspeyres index using the quantities of month @eights,P.(p°p',q°), plus a covariance

Zn:(ri - r*)(ui _U*)SO

term i= between the price relatives=s p'/p® and the quantity relativas

= qg/q°, divided by the Laspeyres quantity ind@xq’,d',p°) between month 0 and mortth

n

Z(ri _r*)(ui _U*)SO
15.47 Although the sign and magnitude of the covariaecm i= , 1S
again an empirical matter, it is possible to makeasonable conjecture about its likely sign.
If there are long-term trends in prices and consamespond normally to price changes in
their purchases, then it is likely that this comade is negative and hence the Paasche index

will be less than the corresponding Laspeyres pnidex; i.e.,
P.(p°, p'.q') <R(p° p'.q") (15.42)

To see why this covariance is likely to be negatsegpose that there is a long-term upward
trend in the price of commodit§? so thatr; — r* = (p/p°) - r* is positive. With normal
consumer substitution responsg¥g° less an average quantity change of this typéédyi

to be negative. Henag — u* = (g/q° — u* is likely to be negative. Thus, the covariancd wi
be negative under these circumstances. Moreovemire distant is the base month 0 from
the current montk the bigger in magnitude the residuals u* are likely to be and the
bigger in magnitude will be the negative covariaticimilarly, the more distant is the
current period monthfrom the base period month 0, the bigger the vedsat; — r* will
probably be and the bigger in magnitude will bedbeariance. Thus under the assumptions
that there are long-term trends in prices and nbocar@sumer substitution responses, the
Laspeyres index will be greater than the correspgnBaasche index, with the divergence

likely to grow as month becomes more distant from month 0.

42 The reader can carry through the argument if tteeadlong-term relative decline in the price o ifh
commodity. The argument required to obtain a nggatovariance requires that there be some diffeieic
the long-term trends in prices; i.e., if all pricgsw (or fall) at the same rate, there will becprproportionality
and the covariance will be zero.

43 However,Q. = u* may also be growing in magnitude, so the netatfam the divergence betweBnandPe is
ambiguous.



15.48 Putting the arguments in the three previous papdgréogether, it can be seen that
under the assumptions that there are long-ternd$ranprices and normal consumer
substitution responses, the Lowe price index batvmenths 0 antwill exceed the
corresponding Laspeyres price index, which in tuilhexceed the corresponding Paasche

price index; i.e., under these hypotheses,

P, B, d)> R(S, B &> BB, b 9 (15.43)

Thus, if the long-run target price index is an ager of the Laspeyres and Paasche indices, it
can be seen that the Laspeyres index will haveparard bias relative to this target index and
the Paasche index will have a downward bias. Intiadd if the base yeds is prior to the

price reference month, month 0, then the Lowe ingidxalso have an upward bias relative

to the Laspeyres index and hence also to the targex.

The Lowe index and mid-year indices

15.49 The discussion in the previous paragraph assuna¢dhté base ye&rfor quantities
preceded the base month for prices, month 0. [€tineent period monthis quite distant
from the base month 0, however, then it is possthink of the base ye#ras referring to a
year that lies between months 0 anlfl the yearb does fall between months 0 andhen the
Lowe index becomesmid-year indexX* It turns out that the Lowe mid-year index no lange

has the upward biases indicated by the inequalitiéi®e inequality (15.43) under the

4 The concept of the mid-year index can be tracediltd1998, p. 46):

When inflation has to be measured over a specsiggience of years, such as a decade, a pragmatic
solution to the problems raised above would bake the middle year as the base year. This can be
justified on the grounds that the basket of goadbkservices purchased in the middle year is likely

be much more representative of the pattern of copson over the decade as a whole than baskets
purchased in either the first or the last yearstédwoer, choosing a more representative basketigitl
tend to reduce, or even eliminate, any bias irradite of inflation over the decade as a whole as
compared with the increase in the CoL index.

Thus, in addition to introducing the concept of id4year index, Hill also introduced the terminology
representativity biasBaldwin (1990, pp. 255-256) also introduced #rentrepresentativenessHere
representativeness [in an index number formulajireg that the weights used in any comparisonicepevels
are related to the volume of purchases in the gerid comparison.”

However, this basic idea dates back to Walsh (190D4;1921a, p. 90). Baldwin (1990, p. 255) alsted that
his concept of representativeness was the sameeabdler’'s (1973, p. 19) conceptatfaracteristicity For
additional material on mid-year indices, see Seh{@l999) and Okamoto (2001). Note that the mid-yedex
concept could be viewed as a close competitor tsM&(1901, p. 431) multi-year fixed basket indexere
the quantity vector was chosen to be an arithneetgeometric average of the quantity vectors insiben of
periods under consideration.



assumption of long-term trends in prices and nosuhbktitution responses by quantities.

15.50 It is now assumed that the base year quantity veworresponds to a year that lies
between months 0 aidUnder the assumption of long-term trends in [@ieed normal
substitution effects so that there are also longr-teends in quantities (in the opposite
direction to the trends in prices so that if ttecommodity price is trending up, then the
correspondingth quantity is trending down), it is likely thatetintermediate year quantity
vector will lie between the monthly quantity vestgf andg'. The mid-year Lowe index,
PLo(p%p4,9P), and the Laspeyres index going from month © Ry(p°,p',aP), will still satisfy

the exact relationship given by equation (15.3@usP.(p°%p',g°) will equal P (p%p",d) plus
the covariance tern¥}-:" (ri — r*)(t — t*) s°J/Qu(a®,q".p%, whereQ.(c°,q°,p°) is the Laspeyres

quantity index going from month 0 toThis covariance term is likely to be negativetsat

R(p’, B, d)> R, (F, b, 4) (15.44)

To see why this covariance is likely to be negatsegpose that there is a long-term upward
trend in the price of commaodifyso thatr; — r* = (p/p:°) — r* is positive. With normal
consumer substitution responsgswill tend to decrease relatively over time andtsig® is
assumed to be betwegfiandg, g°/q° less an average quantity change of this typdasyli

to be negative. Hende- t* = (g°/q°) — t* is likely to be negative. Thus, the covariance is
likely to be negative under these circumstancesréfore, under the assumptions that the
quantity base year falls between months 0 aadtitthat there are long-term trends in prices
and normal consumer substitution responses, theelyass index will normally be larger
than the corresponding Lowe mid-year index, with divergence probably growing as

montht becomes more distant from month O.

15.51 It can also be seen that under the above assuraptimid-year Lowe index is

likely to be greater than the Paasche index betwesths O andt i.e.,
PL(F. B.4)> R(B, b, 4) (15.45)

To see why the above inequality is likely to hahink of ¢° starting at the month 0 quantity
vectorg® and then trending smoothly to the mohtjuantity vectoq'. Wheng® = ¢, the

Lowe indexP.o(p°,p',d°) becomes the Laspeyres ind@xp’,p',q°). WhengP = ¢, the Lowe
indexPLo(p°%,p",d°) becomes the Paasche indxp®,p',qf). Under the assumption of trending

prices and normal substitution responses to thesdihg prices, it was shown earlier that the



Paasche index will be less than the correspondaspéyres price index; i.e., tHa(p°,p',q)
was less thaP.(p°,p',d°), recalling the inequality (15.42). Thus, under #ssumption of
smoothly trending prices and quantities betweenthso@ and, and assuming thaf is

betweery® andg!, we will have

R(P’, B, d)< R (B, b, 6)< P( B b & (15.46)

Thus if the base year for the Lowe index is chdsdre in between the base month for the
prices, month 0, and the current month for pricesntht, and there are trends in prices with
corresponding trends in quantities that corresgombrmal consumer substitution effects,
then the resulting Lowe index is likely to lie betwn the Paasche and Laspeyres indices
going from months O ta If the trends in prices and quantities are smabin choosing the
base year half-way between periods 0 &sliould give a Lowe index that is approximately
half-way between the Paasche and Laspeyres indieasg it will be very close to an ideal
target index between months 0 dndlhis basic idea has been implemented by Okamoto
(2001), using Japanese consumer data, and he foanthe resulting mid-year indices

approximated very closely to the corresponding éfistheal indices.

15.52 It should be noted that these mid-year indicesordy be computed on a

retrospective basis; i.e., they cannot be calcdlgt@ timely fashion, as can Lowe indices
that use a base year that is prior to month 0. Tiidsyear indices cannot be used to replace
the more timely Lowe indices. The above materidiaates, however, that these timely Lowe
indices are likely to have an upward bias thavenebigger than the usual Laspeyres upward
bias compared to an ideal target index, which \&@ker to be an average of the Paasche and

Laspeyres indices.

15.53 All the inequalities derived in this section restthe assumption of long-term trends
in prices (and corresponding economic responsgsantities). If there are no systematic
long-run trends in prices, but only random fluctoa$ around a common trend in all prices,
then the above inequalities are not valid and twd_index using a prior base year will
probably provide a perfectly adequate approximatiobnoth the Paasche and Laspeyres
indices. There are, however, reasons for beliethagthere are some long-run trends in
prices. In particular:

* The computer chip revolution of the past 40 yeaslbd to strong downward trends



in the prices of products that use these chipsignely. As new uses for chips have
been developed over the years, the share of p®thattare chip intensive has grown
and this implies that what used to be a relativeilyor problem has become a more
major problem.

» Other major scientific advances have had similteots. For example, the invention
of fibre optic cable (and lasers) has led to a deand trend in telecommunications
prices as obsolete technologies based on copperangrgradually replaced.

« Since the end of the Second World War, a seri@g@fational trade agreements has
dramatically reduced tariffs around the world. Thesductions, combined with
improvements in transport technologies, have leal\tery rapid growth of
international trade and remarkable improvemenisternational specialization.
Manufacturing activities in the more developed ernies have gradually been
outsourced to lower-wage countries, leading toadiefh in goods prices in most
countries around the world. In contrast, many ses/cannot be readily outsourted
and so, on average, the price of services trendangs while the price of goods
trends downwards.

» At the microeconomic level, there are tremendotferinces in growth rates of
firms. Successful firms expand their scale, loweirtcosts, and cause less successful
competitors to wither away with their higher prieesl lower volumes. This leads to
a systematic negative correlation between chamggsm prices and the
corresponding changes in item volumes that carebelarge indeed.

Thus there is some a priori basis for assuming-foimgdivergent trends in prices. Hence
there is some basis for concern that a Lowe indaiuses a base year for quantity weights
that is prior to the base month for prices may feardly biased, compared to a more ideal

target index.

The Young index

15.54 Recall the definitions for the base year quantiti®gsand the base year prices,
given by equations (15.23) and (15.24) above. Hse lyear expenditure shares can be

defined in the usual way as follows:

4 Some services, however, can be internationallyaurted; e.qg., call centres, computer programmnig a
airline maintenance.



= (15.47)

Define the vector of base year expenditure sharései usual way a® = [s°,...,5°]. These
base year expenditure shares were used to providieanative formula for the base yéar
Lowe price index going from month O todefined in equation (15.26) as

Po(p. P, 0") {gsb(pf/p?)}/@sb(p?/ pf’)}

. Rather than using this index as their short-

run target index, many statistical agencies usédifeving closely related index:

R(P. B.8)=) &( 9/ 6)
i=1 (15.48)
This type of index was first defined by the Englistonomist, Arthur Young (1812)Note
that there is a change in focus when the Youngximslased compared to the other indices
proposed earlier in this chapter. Up to this pdim, indices proposed have been of the fixed
basket type (or averages of such indices) whemanodity baskdhat is somehow
representative for the two periods being compaseathosen and then “purchased” at the
prices of the two periods and the index is takelpetohe ratio of these two costs. In contrast,
for the Young indextepresentative expenditure shawee chosen that pertain to the two
periods under consideration, and then these shagassed to calculate the overall index as a
share-weighted average of the individual priceosafi/p°. Note that this view of index
number theory, based on the share-weighted avefggece ratios, is a little different from
the view taken at the beginning of this chapterictvisaw the index number problem as that
of decomposing a value ratio into the product af terms, one of which expresses the
amount of price change between the two periodgfamdther which expresses the amount of

quantity changé’

46 This formula is attributed to Young by Walsh (1991536; 1932, p. 657).

47 Fisher's 1922 book is famous for developing theiwaatio decomposition approach to index numbeoitj,
but his introductory chapters took the share weidla@verage point of view: “An index number of psicéhen
shows theaverage percentage changéprices from one point of time to another” (Faslf1922, p. 3)). Fisher
went on to note the importance of economic weightfithe preceding calculation treats all the comitiesl as
equally important; consequently, the average whsdacasimple’. If one commaodity is more importariain
another, we may treat the more important as thaughre two or three commaodities, thus giving ibtar three
times as much ‘weight’ as the other commodity” (leis(1922, p. 6)). Walsh (1901, pp. 430-431) caersid
both approaches: “We can either (1) draw some geeaséthe total money values of the classes duimgpoch



15,55 Statistical agencies sometimes regard the Younexindkefined above, as an
approximation to the Laspeyres price inde§’,p',q°). Hence, it is of interest to see how the
two indices compare. Defining the long-term monfbilice relatives going from month Otto

asri = p/p® and using definitions (15.32) and (15.48):

1
N

B (15.49)

2§ =28 =l =28 =
since = i=1 and using (15.32) which defin. . i= P.(p’p',q°). Thus the
Young indexPy(p°,p',s") is equal to the Laspeyres indexp°,p',d%), plus thecovariance
between the difference in the annual shares partpto yearb and the month 0 shares$,—

s?, and the deviations of the relative prices frogirtmeany; — r*.

15.56 Itis no longer possible to guess at what theilsggn of the covariance term is. The
guestion is no longer whether theantitydemanded goes down as the price of commadity
goes up (the answer to this question is usuallg™yeut the new question is: does siare

of expenditure go down as the price of commoddgpes up? The answer to this question

of years, and with weighting so determined empleydeometric average of the price variations [sdtior (2)
draw some average of the mass quantities of tlesesaduring the epoch, and apply to them Scropetkod.”
Scrope’s method is the same as using the Lowe intfalsh (1901, pp. 88-90) consistently stressed the
importance of weighting price ratios by their ecamoimportance (rather than using equally weiglaeerages
of price relatives). Both the value ratio decomposiapproach and the share-weighted average agiptoa
index number theory are studied from the axionyagicspective in Chapter 16.



depends on the elasticity of demand for the prodiettus provisionally assume, however,
that there are long-run trends in commodity preved if the trend in prices for commodity
is above the mean, then the expenditure sharééacdmmodity trenddown (and vice
versa). Thus we are assuming high elasticitieseoy strong substitution effects. Assuming
also that the base ydairs prior to month 0, then under these conditisappose that there is
a long-term upward trend in the price of commodisp that; — r* = (p'/p°) — r* is positive.
With the assumed very elastic consumer substitwésponsess will tend to decrease
relatively over time and sina® is assumed to be prior $8, s is expected to be less thgh
or s” — s® will probably be positive. Thus, the covariancéiksly to be positive under these
circumstanceddence with long-run trends in prices and very etasgsponses of consumers
to price changes, the Young index is likely to teagr than the corresponding Laspeyres

index.

15.57 Assume that there are long-run trends in commaatityes. If the trend in prices for
commodityi is above the mean, then suppose that the expemdhare for the commodity
trendsup (and vice versa). Thus we are assuming low elas@r very weak substitution
effects. Assume also that the base yearprior to month 0 and suppose that there isg-lo
term upward trend in the price of commodisgo that; — r* = (p'/p°) — r* is positive. With

the assumed very inelastic consumer substitutigporesess will tend to increase relatively
over time and sincg® is assumed to be prior $3, it will be the case thaf® is greater thag®
ors” - s%is negative. Thus, the covariance is likely takgative under these circumstances.
Hence with long-run trends in prices and very istilaresponses of consumers to price

changes, the Young index is likely to be less tharrorresponding Laspeyres index.

15.58 The previous two paragraphs indicate that, a priois not known what the likely
difference between the Young index and the cormedipg Laspeyres index will be. If
elasticities of substitution are close to one, tthentwo sets of expenditure shasisands?,

will be close to each other and the difference betwthe two indices will be close to zero. If
monthly expenditure shares have strong seasongaments, however, then the annual

sharess® could differ substantially from the monthly shasés

15.59 Itis useful to have a formula for updating theyimas month’s Young price index

using just month-over-month price relatives. Theig index for montt+1, Py(p°,pt*,s?),



can be written in terms of the Young index for nioPy(p°,p',s’), and an updating factor as

follows:
R (p", B, §)EZ $(%J
S (g )
=R(p’, P, 9)=
;s“( R/ ¥)
Zn: plbqb( pt+l/ PO)
=R (p’ g, 9)2
> pa(n/ P)

using definition (15.47)
ge( )
=R (P, ¢, )2 Pt
2 PR/ §)

CR(P pt,g){g 18 b)}

(15.50)
where the hybrid weighs™ are defined by
go - PR/ F) _ 2P ) -
Yoka(n/ ) D s( a8
k=1 k=1 (1551)

Thus the hybrid weights®™ can be obtained from the base year weightsy updating them;
i.e., by multiplying them by the price relatives {lodicesat higher levels of aggregation),

p/p°. Thus the required updating factor, going from thano montht+1, is the chain link



3 (R )
index, i= , which uses the hybrid share weig§t$ defined by equation

(15.51).

15.60 Even if the Young index provides a close approxiamato the corresponding
Laspeyres index, it is difficult to recommend tlse wf the Young index as a final estimate of
the change in prices going from period Q,tust as it was difficult to recommend the use of
the Laspeyres index as theal estimate of inflation going from period OttoRecall that the
problem with the Laspeyres index was its lack ahsyetry in the treatment of the two
periods under consideration; i.e., using the jigstifon for the Laspeyres index as a good
fixed basket index, there was an identical jusdiien for the use of the Paasche index as an
equally good fixed basket index to compare perdadt. The Young index suffers from a
similar lack of symmetry with respect to the treatmof the base period. The problem can be
explained as follows. The Young indéX(p°p',s’) defined by equation (15.48) calculates
the price change between months O &indating month 0 as the base. But there is no
particular reason to necessarily treat month Gi@adase month other than convention.
Hence, if we treat montihas the base and use the same formula to measysgdbehange

R, (p', p°,s") =is"(p?/p§)

from montht back to month 0, the inde¢ would be

appropriate. This estimate of price change can ltigemade comparable to the original
Young index by taking its reciprocal, leading te followingrebased Young ind&x
Pyv*(p%p',s°), defined as

RY(P’, B, ¢)= iﬁ(ﬁ/ b)

= {leb( R/ ﬁ)‘lr

(15.52)

The rebased Young indeRy*(p°,p',s%), which uses the current month as the initial base

period, is ashare-weighted harmonic meahthe price relatives going from month O to

4 Using Fisher’s (1922, p. 118) terminolod@¢*(p°p',s’) = 1/[Pv(p',p°")] is thetime antithesi®f the original
Young index,Pv(p°,p',s°).



montht, whereas the original Young index(p°p',s’), is ashare-weighted arithmetic mean

of the same price relatives.

15.61 Fisher argued as follows that an index number féarabould give the same answer

no matter which period was chosen as the base:

Either one of the two times may be taken as the¢hawill it make a difference which is chosen?
Certainly, itoughtnot and our Test 1 demands that it shall not. Malfg expressed, the test is that the
formula for calculating an index number should behsthat it will give the same ratio between one

point of comparison and the other poimb, matter which of the two is taken as the b&$sher (1922,
p. 64)).

15.62 The problem with the Young index is that not onbed it not coincide with its

rebased counterpart, but there is a definite inlgumetween the two indices, namely:
R(p° p',s°) <R (p% p',s") (15.53)

with a strict inequality provided that the periogrice vectorp' is not proportional to the
period O price vectgr’.*® A statistical agency that uses the direct YounlgiPy(p°,p',s")
will generally show a higher inflation rate thastatistical agency that uses the same raw

data but uses the rebased Young in@e3(p°,p',s").

15.63 The inequality (15.53) does not tell us by how mtiehYoung index will exceed its
rebased time antithesis. In Appendix 15.3, howeat&s,shown that to the accuracy of a
certain second-order Taylor series approximatioa following relationship holds between

the direct Young index and its time antithesis:
R(p° p',s")=R{(p’ p'.s°) +R(p’ p',s°) Vare (15.54)

where Vareis defined as

49 These inequalities follow from the fact that arhanic mean of M positive numbers is always equalrttess
than the corresponding arithmetic mean; see WaB01(, p.517) or Fisher (1922, pp. 383-384). Thigyirality
is a special case of Schlémilch’s (1858) inequake Hardy, Littlewood and Polya (1934, p. 26)I3Na
(1901, pp. 330-332) explicitly noted the inequa(it.53) and also noted that the corresponding gé&im
average would fall between the harmonic and aritlmaserages. Walsh (1901, p. 432) computed some
numerical examples of the Young index and founddifigrences between it and his “best” indices,neusing
weights that were representative for the periodsgoeompared. Recall that the Lowe index becomedihlsh
index when geometric mean quantity weights are@hasd so the Lowe index can perform well when
representative weights are used. This is not nadgsthe case for the Young index, even usingesentative
weights. Walsh (1901, p. 433) summed up his nurakeikperiments with the Young index as follows: féet,
Young's method, in every form, has been found tbde.”



The deviation® are defined by 1& =ri/r* for i = 1,...,n where the; and their weighted

meanr* are defined by

=t/ 0. P =
r=p/p; 1= 1,.n (15.56)

r'=>"s',
i=1 (15.57)

which turns out to equal the direct Young indexp°.p',s’). The weighted mean of tleeis

defined as

=) g¢
i=1 (15.58)

which turns out to equal ®lence the more dispersion there is in the pricatieds /p°, to

the accuracy of a second-order approximation, tieeenthe direct Young index will exceed

its counterpart that uses month t as the initiasédg@eriod rather than month 0

15.64 Given two a priori equally plausible index numbemfulae that give different
answers, such as the Young index and its timehesis, Fisher (1922, p. 136) generally
suggested taking the geometric average of thendices’ A benefit of this averaging is
that the resulting formula will satisfy the timeveesal test. Thus rather than useitherthe
base period 0 Young indeRy(p°,p',s°), or the current periotlYoung indexPy*(p°,p',s"),
which is always below the base period 0 Young infléxere is any dispersion in relative

prices, it seems preferable to use the followirteiy which is thgeometric averagef the

0 “We now come to a third use of these tests, namelyectify’ formulae, i.e., to derive from anyven
formula which does not satisfy a test another fdamvhich does satisfy it; .... This is easily done'tapssing’,
that is, by averaging antitheses. If a given foarfalls to satisfy Test 1 [the time reversal test]time
antithesis will also fail to satisfy it; but the avwill fail, as it were, in opposite ways, so thatross between
them (obtained bgeometricalaveraging) will give the golden mean which dodgsg4 (Fisher (1922, p.
136)).

Actually the basic idea behind Fisher’s rectifioatprocedure was suggested by Walsh, who was asdiaot
for Fisher (1921), where Fisher gave a previewisfl922 book: “We merely have to take any index bem
find its antithesis in the way prescribed by Prefed-isher, and then draw the geometric mean bettiee
two” (Walsh (1921b, p. 542)).



two alternatively based Young indicgs.

RUF, 0,9)=[ R(B, b & R(h 1"

1/2

(15.59)

If the base year sharg&happen to coincide with both the month 0 and mostiaress®

ands' respectively, it can be seen that the time-rectiff oung indeXPy**( p°,p',s°) defined

by equation (15.59) will coincide with the Fishdeal price index between months 0 &nd
Pe(p°%p',a°.q) (which will also equal the Laspeyres and Paasutiees under these
conditions). Note also that the index* defined by equation (15.59) can be produced on a

timely basis by a statistical agency.

The Divisiaindex and discr ete approximationsto it

The Divisia price and quantity indices

15.65 The second broad approach to index number thebeg @n the assumption that price

and quantity data change in a more or less conisuway.

15.66 Suppose that the price and quantity data om ttmmodities in the chosen domain
of definition can be regarded as continuous fumstiof (continuous) time, sgy(t) andg(t)
fori=1,...n. The value of consumer expenditure at tirrgeV/(t) defined in the obvious way
as:

V(1) EZ p(Hqg(t) (15.60)

15.67 Now suppose that the functiopgt) andq;(t) are differentiable. Then both sides of the
definition (15.60) can be differentiated with respi time to obtain:

V= BMaqm+> p(d
1 i-1 (15.61)

Divide both sides of equation (15.61) throughMgt) and using definition (15.60), the

following equation is obtained:

1 This index is a base year weighted counterpaahtequally weighted index proposed by Carruthers,
Sellwood and Ward (1980, p. 25) and Dalén (19924p) in the context of elementary index numbenalae.
See Chapter 20 for further discussion of this ugiveid index.
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where the timé expenditure share on commaodit(t), is defined as:

s(t)snp'(tA for i=1,2,...,n

D Pt a,(h)
e} (15.63)

15.68 Divisia (1926, p. 39) argued as follovsipposehe aggregate value at tirge/(t),
can be written as the product of a tinice level functionP(t) say, times a timequantity
level function,Q(t) say; i.e., we have:

V(1) =P (15.64)

Suppose further that the functidd@) andQ(t) are differentiable. Then differentiating the
equation (15.64) yields:

Vi) =P+ R (15.65)

Dividing both sides of equation (15.65) ¥t) and using equation (15.64) leads to the

following equation:

Vi) _ P, QM
V(i) PO QY (15.66)

15.69 Divisia compared the two expressions for the Idbaric value derivativey' (t)/V(t),
given by equations (15.62) and (15.66), and he lgichgfined the logarithmic rate of change
of theaggregate price leveP'(t)/P(t), as the first set of terms on the right-hand sile
(15.62). He also simply defined the logarithmieraf change of thaggregate quantity

level Q'(t)/Q(t), as the second set of terms on the right-hareldigéquation (15.62). That is,

he made the following definitions:



wz . tp'_(t)
P(t) ES() (Y (15.67)

wg ; tq'_(t)
Q(t) ES()q(t) (15.68)

15.70 Definitions (15.67) and (15.68) are reasonablenitedns for the proportional

changes in the aggregate price and quantity (antduplevels,P(t) andQ(t).>> The problem
with these definitions is that economic data arecetiected incontinuougime; they are
collected indiscretetime. In other words, even though transactionsbeathought of as
occurring in continuous time, no consumer recoid®hher purchases as they occur in
continuous time; rather, purchases over a finiteetperiod are cumulated and then recorded.
A similar situation occurs for producers or sellefsommodities; firms cumulate their sales
over discrete periods of time for accounting oryreal purposes. If it is attempted to
approximate continuous time by shorter and shalisarete time intervals, empirical price
and quantity data can be expected to become inoghagrratic since consumers only make
purchases at discrete points of time (and produmessllers of commodities only make sales
at discrete points of time). It is, however, stillsome interest to approximate the continuous
time price and quantity levelB(t) andQ(t) defined implicitly by equations (15.67) and
(15.68), by discrete time approximations. This bardone in two ways. Either methods of
numerical approximation can be used or assumptanse made about the path taken
through time by the functions(t) andg(t) (i = 1,...,n). The first strategy is used in the
following section. For discussions of the secomdtspy, see Vogt (1977; 1978), Van ljzeren
(1987, pp. 8-12), Vogt and Barta (1997) and BabO(®a).

15.71 There is a connection between the Divisia price @rahtity levelsP(t) andQ(t), and
the economic approach to index number theory. ddwimection is, however, best made after
studying the economic approach to index numbenth&ince this material is rather

technical, it has been relegated to Appendix 15.4.

52 |f these definitions are applied (approximatety}ie Young index studied in the previous sectiben it can
be seen that in order for the Young price indelzsd@onsistent with the Divisia price index, thedygsar shares
should be chosen to be average shares that apiplg tntire time period between months 0 tand



Discr ete appr oximations to the continuoustime Divisia index

15.72 In order to make operational the continuous timé@dia price and quantity levels,
P(t) andQ(t) defined by the differential equations (15.67) §b%.68), it is necessary to
convert to discrete time. Divisia (1926, p. 40)gesfed a straightforward method for doing

this conversion, which we now outline.

15.73 Define the following price and quantity (forwardjfdrences:

Ap =p@-p@O); i=1..n (15.70)

Using the above definitions:

PQ) _PO+AP _ &P . 2404 ©)
O PO PO 06,0

using(15.67)whent = Oandapproximaing p; (0) by thedifference Ap,

n

Z{ P (0) +Ap, }qi ©) i p, Ma; (0)

=P (p° p',q°.q")

30,000 P00

m=1

(15.71)

wherep' = [pi(t),...,pn(Y)] andq' = [qu(t),...,qn(t)] for t = 0,1. Thus, it can be seen that
Divisia’s discrete approximation to his continudunse price index is just the Laspeyres price
index, P, defined above by equation (15.5).

15.74 But now a problem noted by Frisch (1936, p. 8) oscumstead of approximating the
derivatives by the discrete (forward) differencefirted by equations (15.69) and (15.70),
other approximations could be used and a wide tyapiediscrete time approximations could
be obtained. For example, instead of using forvdfifdrences and evaluating the index at
timet = 0, it would be possible to use backward diffeemnand evaluate the index at tite

1. These backward differences are defined as:



Ap=p(0)-p@®); i=1,..n (15.72)

This use of backward differences leads to the Walg approximation foP(0)/P(1):

PO _PO*+A,P :1+£:1+M
" "o "0 Zn: Pn D0, @)

using(15.67)whent = Jandapproximaing p, (1) by thedifferencea, p,

>{p®+apla® > p OO

— =l

_ 1
S p0G0  Dp@a,n PP

(15.73)

wherePs is the Paasche index defined above by equatiaB)Ibaking reciprocals of both
sides of equation (15.73) leads to the followingcoete approximation t#e(1)/P(0):

PO _

PO) (15.74)

15.75 Thus, as Friscinoted, both the Paasche and Laspeyres indicasecaayarded as
(equally valid) approximations to the continuouseiDivisia price index? Since the
Paasche and Laspeyres indices can differ consigaraome empirical applications, it can
be seen that Divisia’s idea is not all that helpfiulletermining ainiquediscrete time index

number formul&®> What is useful about the Divisia indices is ihea that as the discrete

3 “As the elementary formula of the chaining, we ngay Laspeyres’ or Paasche’s or Edgeworth’s orlyear
any other formula, according as we choose the appation principle for the steps of the numerical
integration” (Frisch (1936, p. 8)).

% Diewert (1980, p. 444) also obtained the PaasnHd aspeyres approximations to the Divisia indesing a
somewhat different approximation argument. He atsmwved how several other popular discrete timexinde
number formulae could be regarded as approximatmiige continuous time Divisia index.

% Trivedi (1981) systematically examined the proldénvolved in finding a “best” discrete time appimation

to the Divisia indices using the techniques of nioag analysis. These numerical analysis technigiepend

on the assumption that the “true” continuous timeraaprice functionspi(t), can be adequately represented by
a polynomial approximation. Thus we are led todbeclusion that the “best” discrete time approxiorato

the Divisia index depends on assumptions that iffieudt to verify.



unit of time gets smaller, discrete approximatitimthe Divisia indices can approach
meaningful economic indices under certain condgidvioreover, if the Divisia concept is
accepted as the “correct” one for index numberrheaben the corresponding “correct”
discrete time counterpart might be taken as a weibaverage of the chain price relatives
pertaining to the adjacent periods under consiaeratvhere the weights are somehow

representative of the two periods under considarati

Fixed base versus chain indices

15.76 In this sectioff, we discuss the merits of using the chain syst@mdnstructing price

indices in the time series context versus usindikeel base systef.

15.77 The chain systethmeasures the change in prices going from onegésia
subsequent period using a bilateral index numbendéa involving the prices and quantities
pertaining to the two adjacent periods. These @reg rates of change (the links in the
chain) are then cumulated to yield the relativeelewf prices over the entire period under
consideration. Thus if the bilateral price indeRjghe chain system generates the following

pattern of price levels for the first three periods

1L, P(p’,p . d), P(P,.p. 4, d)RP B 4 § (15.75)

15.78 In contrast, the fixed base system of price lewss)g the same bilateral index
number formuld, simply computes the level of prices in perigélative to the base period

0 asP(p°,p.,a.9Y). Thus the fixed base pattern of price levelspeniods 0,1 and 2 is:
LP(p, p.d.d), P(F. P4, d) (15.76)

15.79 Note that in both the chain system and the fixezsklsystem of price levels defined

% This section is largely based on the work of Hib88; 1993, p.385-390).

" The results in Appendix 15.4 provide some theoaégupport for the use of chain indices in tha ghown
that under certain conditions, the Divisia indeX @gual an economic index. Hence any discrete@pmation
to the Divisia index will approach the economiceards the time period gets shorter. Thus undeaicert
conditions, chain indices will approach an undedy@conomic index.

%8 The chain principle was introduced independemtly the economics literature by Lehr (1885. pp48%and
Marshall (1887, p. 373). Both authors observed tthetchain system would mitigate the difficultiesig
from the introduction of new commodities into tremeromy, a point also mentioned by Hill (1993, p838
Fisher (1911, p. 203) introduced the term “chaistam”.



by the formulae (15.75) and (15.76), the base pegricce level is set equal to 1. The usual
practice in statistical agencies is to set the pas®d price level equal to 100. If this is done,
then it is necessary to multiply each of the nursliethe formulae (15.75) and (15.76) by
100.

15.80 Because of the difficulties involved in obtainingrent period information on
guantities (or equivalently, on expenditures), msiayfistical agencies loosely base their
consumer price index on the use of the Laspeyresuia (15.5) and the fixed base system.
Therefore, it is of interest to look at some of plussible problems associated with the use of

fixed base Laspeyres indices.

15.81 The main problem with the use of fixed base Laspeymndices is that the period 0
fixed basket of commodities that is being pricetlinyperiodt can often be quite different
from the period basket. Thus if there are systematic trends least some of the prices and
quantities® in the index basket, the fixed base Laspeyre® pnidexP.(p°p',q°,q") can be
quite different from the corresponding fixed basa$the price inde®s(p°p",q%,q").%° This
means that both indices are likely to be an inadegitepresentation of the movement in

average prices over the time period under condidera

15.82 The fixed base Laspeyres quantity index cannotsied tor ever: eventually, the
current period quantitieg are so far removed from the base period quantifidet the base

must be changed. Chaining is merely the limitingecahere the base is changed each period.

15.83 The main advantage of the chain system is thatrumatenal conditions, chaining will
reduce the spread between the Paasche and Laspalces® These two indices each
provide an asymmetric perspective on the amouptioé change that has occurred between

the two periods under consideration and it couléXjgected that a single point estimate of

%9 Examples of rapidly downward trending prices apdiard trending quantities are computers, electronic
equipment of all types, Internet access and telewamication charges.

€0 Note thatP (p°p',a°.qf) will equal Pe(p°p',a°.q) if eitherthe two quantity vectorg’ andg' are proportionabr
the two price vectorp®’ andp' are proportional. Thus in order to obtain a differe between the Paasche and
Laspeyres indices, honproportionalitytinth prices and quantities is required.

61 See Diewert (1978, p. 895) and Hill (1988; 1998, 387-388).



the aggregate price change should lie between thesestimates. Thus the use of either a
chained Paasche or Laspeyres index will usually iea smaller difference between the two

and hence to estimates that are closer to then"tfat

15.84 Hill (1993, p. 388), drawing on the earlier reséant Szulc (1983) and Hill (1988,

pp. 136-137), noted that it is not appropriatede the chain system when prices oscillate or
bounce. This phenomenon can occur in the conterdgpflar seasonal fluctuations or in the
context of price wars. However, in the contextaighly monotonically changing prices and
quantities, Hill (1993, p. 389) recommended theafsehained symmetrically weighted
indices (see paragraphs 15.18 to 15.32). The FafeeValsh indices are examples of

symmetrically weighted indice%.

15.85 It is possible to be a little more precise aboetd¢bnditions under which to chain or

not to chain. Basically, chaining is advisableng prices and quantities pertaining to adjacent
periods arenore similarthan the prices and quantities of more distarnibdsy since this
strategy will lead to a narrowing of the spreaduasin the Paasche and Laspeyres indices at

each link®* Of course, one needs a measure of how similatharprices and quantities

62 This observation will be illustrated with an adiél data set in Chapter 19.

& Regular seasonal fluctuations can cause monthiyarterly data to “bounce” — using the term coibgd
Szulc (1983, p. 548) — and chaining bouncing datalead to a considerable amount of index “drif#;, if
after 12 months, prices and quantities return ¢dr tievels of a year earlier, then a chained mgnitidex will
usually not return to unity. Hence, the use of rhdiindices for “noisy” monthly or quarterly dasariot
recommended without careful consideration.

8 Walsh, in discussing whether fixed base or chainddx numbers should be constructed, took fortgdan
that the precision of all reasonable bilateral indember formulae would improve, provided that tive
periods or situations being compared were mordainand hence favoured the use of chained indfdde
question is really, in which of the two coursegégfi base or chained index numbers] are we likebeaino
greater exactness in the comparisons actually mddethe probability seems to incline in favotted second
course; for the conditions are likely to be lessgedie between two contiguous periods than betweemériods
say fifty years apart” (Walsh (1901, p. 206)).

Walsh (1921a, pp. 84-85) later reiterated his pegfee for chained index numbers. Fisher also madefithe
idea that the chain system would usually makedridhtcomparisons between price and quantity datavikre
more similar, and hence the resulting comparisamsldvbe more accurate:

The index numbers for 1909 and 1910 (each calaliatéeerms of 1867-1877) are compared with eachroBut
direct comparison between 1909 and 1910 would gigi#ferent and more valuable result. To use a combase
is like comparing the relative heights of two megmheasuring the height of each above the flooteat of
putting them back to back and directly measurirgydifference of level between the tops of theirdse@isher
(1911, p. 204)).

It seems, therefore, advisable to compare eachwigathe next, or, in other words, to make eacarytbe base
year for the next. Such a procedure has been reeoden by Marshall, Edgeworth and Flux. It largelets the
difficulty of non-uniform changes in the Q’s, famainequalities for successive years are relatisatall (Fisher



pertaining to two periods. The similarity measuwresld berelative ones orabsoluteones. In
the case of absolute comparisons, two vectorseo$éime dimension are similar if they are
identical and dissimilar otherwise. In the caseetdtive comparisons, two vectors are similar
if they are proportional and dissimilar if they am@n-proportionaf> Once a similarity
measure has been defined, the prices and quartitezsch period can be compared to each
other using this measure, and a “tree” or pathlthks all of the observations can be
constructed where the most similar observationsangpared with each other using a
bilateral index number formufa Hill (1995) defined the price structures betwesa t
countries to be more dissimilar the bigger the apteetweerr. andPs; i.e., the bigger is
{P./Pe, Pe/P.}. The problem with this measure of dissimilaritythe price structures of the
two countries is that it could be the case that Pr (so that the Hill measure would register
a maximal degree of similarity), bpt could be very different from'. Thus there is a need
for a more systematic study of similarity (or dmssarity) measures in order to pick the
“best” one that could be used as an input into${l1999a; 1999b; 2001) spanning tree

algorithm for linking observations.

15.86 The method of linking observations explained inghevious paragraph, based on the
similarity of the price and quantity structuresaofy two observations, may not be practical in
a statistical agency context since the additioa néw period may lead to a reordering of the
previous links. The above “scientific” method forking observations may be useful,
however, in deciding whether chaining is preferaislevhether fixed base indices should be

used while making month-to-month comparisons withyear.

15.87 Some index number theorists have objected to thmgrinciple on the grounds that

it has no counterpart in the spatial context:

They [chain indices] only apply to intertemporatguarisons, and in contrast to direct indices they a

not applicable to cases in which no natural ordexeguence exists. Thus the idea of a chain inolex f

(1911, pp. 423-424)).

% Diewert (2002b) takes an axiomatic approach tinidef variousindicesof absolute and relative
dissimilarity.

% Fisher (1922, pp.271-276) hinted at the possjhilftusing spatial linking; i.e., of linking courgs that are
similar in structure. The modern literature hasyvéeer, grown as a result of the pioneering effoftRobert
Hill (1995; 1999a; 1999b; 2001). Hill (1995) usée spread between the Paasche and Laspeyresnaficesi
as an indicator of similarity, and showed that trigerion gives the same results as a criteria fhoks at the
spread between the Paasche and Laspeyres quadititgs.



example has no counterpart in interregional orirggonal price comparisons, because countries
cannot be sequenced in a “logical” or “natural” wthere is nck+1 nork-1country to be compared
with countryk) (von der Lippe (2001, p. 125).

This is of course correct, but the approach of #kks lead to a “natural” set of spatial links.
Applying the same approach to the time series com# lead to a set of links between
periods which may not be month-to-month but it willmany cases justify year-over-year

linking of the data pertaining to the same monthisproblem is reconsidered in Chapter 22.

15.88 It is of some interest to determine if there adenumber formulae that give the
same answer when either the fixed base or chatamyis used. Comparing the sequence of
chain indices defined by the expression (15.7%h¢ocorresponding fixed base indices, it can
be seen that we will obtain the same answer ithede periods if the index number formula

P satisfies the following functional equation fof @lice and quantity vectors:
PP, ., )= P B, d. O RB B & 4 (15.77)

If an index number formulB satisfies the equation (15.77), tHesatisfies theircularity

test®

15.89 If it is assumed that the index number formRlgatisfies certain properties or tests in
addition to the circularity test abo%&then Funke, Hacker and Voeller (1979) showedPhat
must have the following functional form, originalgtablished by Koniis and Byushgéns
(1926, pp. 163-166):

671t should be noted that von der Lippe (2001, (358) is a vigorous critic of all index number tebaised on
symmetry in the time series context, although heiliing to accept symmetry in the context of makin
international comparisons. “But there are goodgrasot to insist on such criteria in tlietertemporalcase.
When no symmetry exists between 0 gritiere is no point in interchanging 0 ahd@von der Lippe (2001, p.
58)).

% The test name is attributable to Fisher (192218) and the concept originated from Westergas®88q1pp.
218-219).

% The additional tests referred to above are: (§itpoty and continuity ofP(p°p',°,q%) for all strictly positive
price and quantity vectops,p',q°,q; (i) the identity test; (i) the commensurabjlitest; (iv) P(p°,p',q%,q") is
positively homogeneous of degree one in the compusrap and (v)P(p°,p',0%.qt) is positively homogeneous
of degree zero in the componentgbf

0 Konus and Byushgens show that the index definegjonation (15.78) is exact for Cobb-Douglas (1928)
preferences; see also Pollak (1983, pp. 119-12®.cbncept of an exact index number formula isarpt in
Chapter 17.

L The result in equation (15.78) can be derivedgisisults in Eichhorn (1978, pp. 167-168) and \aut
Barta (1997, p. 47). A simple proof can be foun®8aik (1995). This result vindicates Irving Fistge(1922, p.
274) intuition that “the only formulae which conforperfectly to the circular test are index numbvengch have



n 1 ai
Ps(p’ p'a%,q") = ” (ioj
=\ B (15.78)

where then constantsi; satisfy the following restrictions:

n

dYa,=1 and ;> 0 for i=1.n
= (15.79)

Thus under very weak regularity conditions, theygrice index satisfying the circularity test
Is a weighted geometric average of all the indigidarice ratios, the weights being constant
through time.

15.90 An interesting special case of the family of indickefined by equation (15.78) occurs
when the weights; are all equal. In this caseys reduces to the Jevons (1865) index:
1

P, o )= (3]
” P (15.80)

15.91 The problem with the indices defined by Koniis apddhgens, and Jevons is that the
individual price ratiospi/p°, have weights (either, or 1h) that arendependenof the
economic importance of commaodityn the two periods under consideration. Put arrothe
way, these price weights are independent of thetdies of commodity consumed or the
expenditures on commodityduring the two periods. Hence, these indices ateaally

suitable for use by statistical agencies at hidgnls of aggregation when expenditure share

information is availablé?

15.92 The above results indicate that it is not usefddk that the price indéx satisfy the

constant weights.”. Fisher (1922, p. 275) went on to assert: “Rilgarly, constant weighting is not
theoretically correct. If we compare 1913 with 1944 need one set of weights; if we compare 1918 wi
1915, we need, theoretically at least, anotheofsekights. ... Similarly, turning from time to spaem index
number for comparing the United States and Engtagdires one set of weights, and an index number fo
comparing the United States and France requiresrétically at least, another.”

2When there are only two periods being comparedeapénditure share information is available fohbot

periods, then the economic approach will suggeStapter 17 that good choices for the weightare the
0 1

arithmetic averages of the period 0 and 1 exper&dkhares% and ™.



circularity testexactly It is nevertheless of some interest to find indember formulae that
satisfy the circularity test to some degree of appnation, since the use of such an index
number formula will lead to measures of aggregatehange that are more or less the
same no matter whether we use the chain or fixed bgstems. Fisher (1922, p. 284) found
that deviations from circularity using his data @etl the Fisher ideal price indBx defined
by equation (15.12) above were quite small. THestirgely high degree of correspondence
between fixed base and chain indices has been foumold for other symmetrically
weighted formulae, such as the Walsh inBexdefined by equation (15.19)In most time
series applications of index number theory wheeebtlise year in fixed base indices is
changed every five years or so, it will not mattery much whether the statistical agency
uses a fixed base price index or a chain indexjigeal that a symmetrically weighted
formula is used?! The choice between a fixed base price index ocindhdex will depend, of
course, on the length of the time series considaneidthe degree of variation in the prices
and quantities as we go from period to period. Mioee prices and quantities are subject to

large fluctuations (rather than smooth trends))dle the correspondente.

15.93 It is possible to give a theoretical explanationtfe approximate satisfaction of the
circularity test for symmetrically weighted indeMmber formulae. Another symmetrically
weighted formula is the Térngvist ind@x.”® The natural logarithm of this index is defined as
follows:
0 1 0 ~1\ — C 1 0 p|l
InP.(p°, p,q ,q)=Z§(s +sl)ln )
R (15.81)

i=1

where the periotiexpenditure shares are defined by equation (15.7). Alterman, Diewert

3 See, for example, Diewert (1978, p. 894)). Wald0(, pp. 424 and 429) found that his three preferr
formulae all approximated each other very welldiasthe Fisher ideal for his artificial data set.

" More specifically, most superlative indices (whaale symmetrically weighted) will satisfy the cilaxity test
to a high degree of approximation in the time secientext. See Chapter 17 for the definition afipeslative
index. It is worth stressing that fixed base Paasuid Laspeyres indices are very likely to divergesiderably
over a five-year period if computers (or any otb@mmodity which has price and quantity trends #ratquite
different from the trends in the other commoditias included in the value aggregate under corsider(see
Chapter 19 for some “empirical” evidence on thigi¢).

S Again, see Szulc (1983) and Hill (1988).

76 This formula was implicitly introduced in Tornquid936) and explicitly defined in Térnqvist andrfigvist
(1937).



and Feenstra (1999, p. 61) show that if the loyaniit price ratios Ing/pi*) trend linearly

with timet and the expenditure shaigsalso trend linearly with time, then the Térnqvist
index Pr will satisfy the circularity test exactly.Since many economic time series on prices
and quantities satisfy these assumptions approglynahe Torngvist indefr will satisfy

the circularity test approximately. As is seen lma@ter 19, the Térnqvist index generally
closely approximates the symmetrically weightedh&isand Walsh indices, so that for many
economic time series (with smooth trends), alléloEthese symmetrically weighted indices
will satisfy the circularity test to a high enoudégree of approximation so that it will not

matter whether we use the fixed base or chain ipteanc

15.94 Walsh (1901, p. 401; 1921a, p. 98; 1921b, p. d®pduced the following useful

variant of the circularity test:
1=P(p", o, ¢, )R P, B, d, )..R b, B, 7, § (15.82)

The motivation for this test is the following. Use bilateral index formulB(p°,p*,q°,q%) to
calculate the change in prices going from peri¢d D, use the same formula evaluated at the
data corresponding to periods 1 anéP@',p?,q,g°), to calculate the change in prices going
from period 1to 2, ... , use(p™*,p",q"%,g") to calculate the change in prices going from
periodT-1 to T, introduce an artificial perio@i+1 that has exactly the price and quantity of
the initial period 0 and uge(p’,p™*,9",g"™*) to calculate the change in prices going from
periodT to T+1. Finally, multiply all of these indices togeth&ince we end up where we
started, the product of all of these indices vd#ally be one. Diewert (1993a, p. 40) called
this test anultiperiod identity test Note that ifT = 2 (so that the number of periods is three
in total), then Walsh'’s test reduces to Fisher@2(t, p. 534; 1922, p. 64) time reversal tést.

15.95 Walsh (1901, pp. 423-433) showed how his circyldast could be used in order to

evaluate how “good” any bilateral index number falawas. What he did was invent

" This exactness result can be extended to covaratsewhen there are monthly proportional variation
prices, and the expenditure shares have constastisal effects in addition to linear trends; setershan,
Diewert and Feenstra (1999, p. 65).

8Walsh (1921a, p. 98) called his test tireular testbut since Fisher also used this term to desciitbe h
transitivity test defined earlier by equation (15,4t seems best to stick to Fisher’'s terminolsimce it is well
established in the literature.

Walsh (1921b, pp. 540-541) noted that the timersal test was a special case of his circulargiy te



artificial price and quantity data for five perio@sd he added a sixth period that had the data
of the first period. He then evaluated the rightihaide of equation (15.82) for various
formulae,P(p°p',a°,g"), and determined how far from unity the resultsevélis “best”

formulae had products that were close to Bne.

15.96 This same framework is often used to evaluate ffi@aey of chainedndicesversus
their direct counterparts. Thus if the right-hamteof equation (15.82) turns out to be
different from unity, the chained indices are daiduffer from “chain drift”. If a formula
does suffer from chain drift, it is sometimes receended that fixed base indices be used in
place of chained ones. However, this advice, iepted, wouldalwayslead to the adoption
of fixed base indices, provided that the bilatandex formula satisfies the identity test,
P(p°p°%0%q% = 1. Thus it is not recommended that Walsh'sutagty test be used to decide
whether fixed base or chained indices should beutated. It is fair to use Walsh’s
circularity test, as he originally used it as apragimate method for deciding how “good” a
particular index number formula is. To decide wieetio chain or use fixed base indices,
look at how similar the observations being compamedand choose the method which will

best link up the most similar observations.

15.97 Various properties, axioms or tests that an inderlrer formula could satisfy have
been introduced in this chapter. In the followitgpter, the test approach to index number

theory is studied in a more systematic manner.

Appendix 15.1 Therelationship between the Paasche and L aspeyresindices
1. Recall the notation used in paragraphs 15.161b7, above. Define thth relative price

or price relative; and thdth quantity relative; as follows:

1 1
%; t; io; i=1,..n
P q (A15.1.1)

r

Using formula (15.8) for the Laspeyres price inéexand definitions (A15.1.1), we have:

8 This is essentially a variant of the methodoldupt tFisher (1922, p- 284) used to check how welbua
formulae corresponded to his version of the cindtyldest.



r*

R= s
i=1

(A15.1.2)

i.e., we define the “average” price relativeas the base period expenditure share-weighted

average of the individual price relatives,

2. Using formula (15.6) for the Paasche price indgxve have:

2pd DRy
P, =12 == using definitions (A15.1.1
D Patn D taPRd:
m=1 m=1
PILLE I

n
= i;l R Z(ri _r*)(ti _t*)suo +r
Ztms(r)n Z thOm =
m=1 mel

(A15.1.3)

using (A15.1.2) and’-;" s° = 1 and where the “average” quantity relatives defined as

t = Z t 30 =Q.
= (A15.1.4)
where the last equality follows using equation {1%, the definition of the Laspeyres

quantity indexQ..

3. Taking the difference betwe®a andP. and using equations (A15.1.2)—(A15.1.4) yields:

R-R =3 (1=t ~t)¢
Q = (A15.1.5)
Now letr andt be discrete random variables that take omthaluesr; andt; respectively.
Let s° be the joint probability that=r; andt =t fori = 1,...n and let the joint probability be
0 if r =r; andt =t; wherei #j. It can be verified that the summatign;” (ri— r*)(t — t*) s°
on the right-hand side of equation (A15.1.5) is¢beariance between the price relatives
and the corresponding quantity relatite3 his covariance can be converted into a

correlation coefficient! If this covariance is negative, which is the ustese in the



consumer context, thé? will be less tharP..
Appendix 15.2 The relationship between the L owe and L aspeyr esindices

1. Recall the notation used in paragraphs 15.3%148, above. Define thth relative price
relating the price of commodityof montht to month Oyi, and thath quantity relativet;,

relating quantity of commodityin base yeal to month @; as follows:

B g

t b
=M + = .
et =
i i

P 9 i=1,..n (A15.2.1)

As in Appendix A15.1, the Laspeyres price indRe°,p',g°) can be defined ag, the month
0 expenditure share-weighted average of the indaligrice relatives; defined in (A15.2.1)
except that the monthprice,p, now replaces period 1 prigg?, in the definition of théth

price relativer;:

B (A15.2.2)

2. The “average” quantity relatité relating the quantities of base ydato those of month 0
is defined as the month 0 expenditure share-waiginerage of the individual quantity
relativest; defined in (A15.2.1):
t = z { 30 =Q.
= (A15.2.3)
whereQ. = Q.(q%,0",p°) is the Laspeyres quantity index relating the gjitias of month Og,

to those of the yedr, o°, using the prices of month @, as weights.

3. Using definition (15.26), the Lowe index compagrihe prices in monthto those of

month 0, using the quantity weights of the base hes equal to:

81 See Bortkiewicz (1923, pp. 374-375) for the fapplication of this correlation coefficient decorsjtimn
technique.
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since using (A15.2.2)F equals the Laspeyres price ind&(p°,p',q°), and using (A15.2.3),
t* equals the Laspeyres quantity ind€x(q°,q°.p°). Thus equation (A15.2.4) tells us that the
Lowe price index using the quantities of ybaas weightsP..(p°,p",aP), is equal to the usual

Laspeyres index using the quantities of month @eights,P.(p°p',q°), plus a covariance

S0 -0 -t

term i= between the price relatives= p/p° and the quantity relatives=

a°/q°, divided by the Laspeyres quantity ind@xq’,q°p°) between month 0 and base ybar

Appendix 15.3 The relationship between the Young index and itstime antithesis

1. Recall that the direct Young indeX{p°p',s’), was defined by equation (15.48) and its
time antithesisPy*(p°,p',s"), was defined by equation (15.52). Define itterelative price
between months O arics
r=p/p’ i= 1,n (A15.3.1)
and define the weighted average (using the basengightssP) of ther; as

n
r'=>s’r,
i=

(A15.3.2)

which turns out to equal the direct Young indexp°p',s’). Define the deviatiom of r; from

their weighted average using the following equations:

—r4 . i=
r=r’(+e); 1= 1n (A15.3.3)

If equation (A15.3.3) is substituted into equat{®i5.3.2), the following equation is

obtained:
023 st
i=1

n n
=rP+r”> s’e sincd | ¢ =
i=1 i=1

(A15.3.4)

= (A15.3.5)

Thus the weighted mea of the deviation® equals 0.



2. The direct Young inde®y(p°,p',s%), and its time antithesi®y*(p°p',s°), can be written as
functions ofr*, the weightss® and the deviations of the price relatieeas follows:

R(p’, B,8)=1 (A15.3.6)

RA(E, B, §>={i 8 Fr eﬂ
(A15.3.7)

3. Now regardPy*(p°,p',s°) as a function of the vector of deviations; [ey,...,&], sayPy*(e).
The second-order Taylor series approximatioR\tge) around the poing = 0, is given by

the following expressiof?

R = rD+rDi ge+1°Y> §gee, —r°y e’

i=1 j=1 =
n n n 2
= rD+rDO+rDZSﬁ{Z se }e, —rDZQb[q —eD] using(A15.3.5)
i=1 =1 i=1

n n 2
=r7+r7 s"[0]e —rDZSb[q —eD] using(A15.3.5)
i=1 i=1

n 2
=R (p°% p',s") - R (p° p',s")>] sb[q —eD] using(A15.3.6)
i=1

=R(p° p',s°) - R (p° p',s")Vare (A15.3.8)

where the weighted sample variance of the vextdrprice deviations is defined as

Vare Eiznl::?[e— @f

(A15.3.9)

4. Rearranging equation (A15.3.8) gives the follmyvapproximate relationship between the

direct Young indeXP(p°,p',s%) and its time antithesBy*(p°,p',s°), to the accuracy of a second-

8 This type of second order approximation is attalble to Dalén (1992; 143) for the case=1 and to Diewert
(19954, p. 29) for the case of a genetal



order Taylor series approximation about a priceppahere the monthprice vector is

proportional to the month O price vector:
R(p’, B, 8)=R(B, b 8+ A b h"Var (A15.3.10)

Thus, to the accuracy of a second-order approximathe direct Young index will exceed
its time antithesis by a term equal to the diregtiiYg index times the weighted variance of
the deviations of the price relatives from theiigi®ed mean. Thus the bigger is the

dispersion in relative prices, the more the didmiing index will exceed its time antithesis.

Appendix 15.4 Therelationship between the Divisia and economic approaches

1. Divisia’s approach to index number theory rebedthe theory of differentiation. Thus it
does not appear to have any connection with ecantimaory. However, starting with Ville
(1946), a number of economithave established that the Divisia price and quaiméices

do have a connection with the economic approachdexmumber theory. This connection is
outlined in this appendix.

2. The economic approach to the determination@fptice level and the quantity level is first
outlined. The particular economic approach thasisd here is attributable to Shephard
(1953; 1970), Samuelson (1953) and Samuelson aath$\1974).

3. It is assumed that “the” consumer has well-a&fpreference®ver different

combinations of thea consumer commodities or items. Each combinatidteais can be
represented by a positive vectpe [qu,...,0:]. The consumer’s preferences over alternative
possible consumption vectaysare assumed to be representable by a continuons, n
decreasing and concave utility functiont is further assumed that the consumer minimizes
the cost of achieving the peritditility level u' = f(q') for periodst = 0,1,...T. Thus it is
assumed that the observed peti@dnsumption vectay solves the following perioticost

minimization problem:

8 See for example Malmquist (1953, p. 227), Wolds@Pp. 134-147), Solow (1957), Jorgenson and chieks
(1967) and Hulten (1973), and see Balk (2000aafagcent survey of work on Divisia price and qugnti
indices.



et h=min, {3 fa (9= 6= 1(0)

=> piq; t=0,1,..T
= (A15.4.1)

The period price vector for th@ commodities under consideration that the consdates
is p'. Note that the solution to the peribdost or expenditure minimization problem defines

theconsumer’s cost functio@(u',p").

4. An additional regularity condition is placed thie consumer’s utility functiofi It is
assumed thdtis (positively) linearly homogeneous for stricflgsitive quantity vectors.
Under this assumption, the consumer’s expendituo®st functionC(u,p), decomposes into
uc(p) wherec(p) is the consumer’s unit cost functiéfthe following equation is obtained:

Zn:p,tqt =q p) f(q) fort=0,1,...,T
i=1 (A15.4.2)

2. pg
Thus the periodtotal expenditure on thecommodities in the aggrege i=, ,
decomposes into the product of two terofp)f(q’). The period unit costc(p’), can be

identified as the periotdprice levelP' and the periodllevel of utility, f(q"), can be identified

as the period quantity levelQ'.

5. The economic price level for perigd®* = c(p"), defined in the previous paragraph, is now
related to the Divisia price level for timgP(t), that was implicitly defined by the differential
equation (15.67). As in paragraphs 15.65 to 15hdk of the prices as being continuous,
differentiable functions of timegi(t) say, fori = 1,...,n. Thus the unit cost function can be

regarded as a function of timas well; i.e., define the unit cost function dsiraction oft as

c®=c[ ) p(d- B (A15.4.3)

6. Assuming that the first-order partial derivagvd the unit cost functiog(p) exist,

8 See Diewert (1993b, pp.120-121) for material oit ewst functions. This material will also be cozéiin
Chapter 17.



calculate the logarithmic derivative of(t) as follows:

dinc () _ 1 dé(y

dt c(t) dt
> A, B0, n 0] B
T . () B (0] a5

wherec[pa(t),pz(t), .. .,pn(t)] = oc[pa(t),pa(t), ... ,pa(t))/dpi is the partial derivative of the unit
cost function with respect to thin price,p, andp/'(t) = dp(t)/dt is the time derivative of the
ith price functionpi(t). Using Shephard’s (1953, p. 11) Lemma, the comsisncost-

minimizing demand for commodityat timet is:
a (t) = u(t)c, [pl(t), P, (1), P, (t)] fori=1,..n (A15.4.5)
where the utility level at timeis u(t) = f[q.(t),q(t),...,0(t)]. The continuous time counterpart

to equations (A15.4.2) above is that total expemediat time is equal to total cost at tinte

which in turn is equal to the utility level(t), times the periotlunit cost,c*(t):

Zn: p (DG (1) = ut)e’ (1) = ud p, (1), P, (0)..... P, )]
E (A15.4.6)

7. The logarithmic derivative of the Divisia priexel P(t) can be written as (recall equation
(15.67) above):



n

Spma® > p O

PO 5= == Using(A15.4.6)
PO S pgm U0
3 p {0 dp. 0, B, ..., O]
=izl . using(A15.4.5)
u(t)c (t)
3 ¢ [p. ), (D). B, )R © *
_= * -1 A0 Ging(a15.4.4)
c (t) c(t) dt
_ c'(t)
c(t) (A15.4.7)

Thus under the above continuous time cost-minirgizissumptions, the Divisia price level,

P(1), is essentially equal to the unit cost functioalaated at the timeprices,c*(t) =
c[pa(t),P(t), ... .Pa(t)].

8. If the Divisia price levelP(t) is set equal to the unit cost functictft) =
c[pa(t),p2A(t),...,pa(t)], then from equation (A15.4.2), it follows thaktDivisia quantity level
Q(t) defined by equation (15.68) will equal the consumutility function regarded as a
function of time f*(t) = f[qu(t),...,g.(t)]. Thus, under the assumption that the consumer is
continuously minimizing the cost of achieving aegwitility level where the utility or
preference function is linearly homogeneous, itlteen shown that the Divisia price and
quantity leveldP(t) andQ(t), defined implicitly by the differential equatio(¥5.67) and
(15.68), are essentially equal to the consumeiitsamst functionc*(t) and utility function
f*(t) respectively’* These are rather remarkable equalities sinceimeipte, given the
functions of timepi(t) andqi(t), the differential equations that define the Diprice and
quantity indices can be solved numerically and b&{t) andQ(t) are in principle

observable (up to some normalizing constants).

8 Obviously, the scale of the utility and cost fians are not uniquely determined by the differdrguations
(15.62) and (15.63).



9. For more on the Divisia approach to index nuntbeory, see Vogt (1977; 1978) and Balk
(2000a). An alternative approach to Divisia indiaesg line integrals may be found in the

forthcoming companion voluntferoducer price index manuéiMF et al., 2004).



