16 THE AXIOMATIC AND STOCHASTIC APPROACHES TO
INDEX NUMBER THEORY

Introduction

16.1 As was seen in Chapter 15, it is useful to be tth&valuate various index number
formulae that have been proposed in terms of greperties. If a formula turns out to have
rather undesirable properties, this casts doubtss@uitability as an index that could be used
by a statistical agency as a target index. Lookinipe mathematical properties of index
number formulae leads to thest or axiomatic approach to index number theory. In this
approach, desirable properties for an index nurfdyerula are proposed, and it is then
attempted to determine whether any formula is sest with these properties or tests. An
ideal outcome is the situation where the proposststare both desirable and completely

determine the functional form for the formula.

16.2 The axiomatic approach to index number theoryiscompletely straightforward,
since choices have to be made in two dimensions:

* The index number framework must be determined.

* Once the framework has been decided upon, it reudebided what tests or

properties should be imposed on the index number.

The second point is straightforward: different pratatisticians may have different ideas
about which tests are important, and alternative @leaxioms can lead to alternative “best”
index number functional forms. This point must leptkin mind while reading this chapter,
since there is no universal agreement on whathhbst” set of “reasonable” axioms is. Hence

the axiomatic approach can lead to more than oseifigex number formula.

16.3 The first point about choices listed above requitgther discussion. In the previous
chapter, for the most part, the focus wadbidateral index number theory; i.e., it was
assumed that prices and quantities for the saommmodities were given for two periods
and the object of the index number formula wasotogare the overall level of prices in one
period with the other period. In this frameworkfhbeets of price and quantity vectors were
regarded as variables which could be independegatigd so that, for example, variations in
the prices of one period did not affect the prickthe other period or the quantities in either

period. The emphasis was on comparing the ovevatlaf a fixed basket of quantities in the



two periods or taking averages of such fixed basldites. This is an example of an index

number framework.

16.4 However, other index number frameworks are posskbr example, instead of
decomposing a value ratio into a term that reprtsganice change between the two periods
times another term that represents quantity chagattempt could be made to decompose a
value aggregate for one period into a single nurttierrepresents the price level in the
period times another number that represents thetiggiéevel in the period. In the first
variant of this approach, the price index numbeigposed to be a function of the
commodity prices pertaining to that aggregate engériod under consideration, while the
guantity index number is supposed to be a funaifthen commodity quantities pertaining
to the aggregate in the period. The resulting pridex function was called aatosolute index
number by Frisch (1930, p. 397),mice level by Eichhorn (1978, p. 141) andiailateral
price index by Anderson, Jones and Nesmith (1997, p. 75).skecand variant of this
approach, the price and quantity functions arenadtbto depend on both the price and
quantity vectors pertaining to the period undersideration: These two variants of

unilateral index number theory will be considenegaragraphs 16.11 to 16.29.

16.5 The remaining approaches in this chapter are llalgkateral approaches; i.e., the
prices and quantities in an aggregate are comparddo periods. In paragraphs 16.30 to
16.73 and 16.94 to 16.129, the value ratio decoitippspproach is takeh.In paragraphs
16.30 to 16.73, the bilateral price and quantitiides,P(p°,p".q°.q") andQ(p° p*,a’,q%), are
regarded as functions of the price vectors perigitn the two periodg’ andp®, and the two
quantity vectorsg® andg*. Not only do the axioms or tests that are plagethe price index
P(p°.p".a°.q") reflect “reasonable” price index properties, soine tests have their origin as
0

“reasonable” tests on the quantity ind@¢p°,p*.o°.q"). The approach in paragraphs 16.30 to

16.73 simultaneously determines the “best” priog guantity indices.

! Eichhorn (1978, p. 144) and Diewert (1993d, pc@®)sidered this approach.

2 |n these unilateral index number approachesptive and quantity vectors are allowed to vary petelently.
In yet another index number framework, prices Hiomad to vary freely but quantities are regarded a
functions of the prices. This leads to #oenomic approach to index number theory, which is considered briefly
in Appendix 15.4 of Chapter 15, and in more dept@hapters 17 and 18.

% Recall paragraphs 15.7 to 15.17 of Chapter 1&ricexplanation of this approach.



16.6 In paragraphs 16.74 to 16.93, attention is shifbeitheprice ratios for then
commodities between periods 0 and; & pi/p° fori = 1,...n. In theunweighted stochastic
approach to index number theory, the price index is regarded as an evenly weigatedage

of then price relatives or ratios;. Carli (1764) and Jevons (1863; 1865) were thikegar
pioneers in this approach to index number theoith @arli using the arithmetic average of
the price relatives and Jevons endorsing the geanaeerage (but also considering the
harmonic average). This approach to index numtesrthwill be covered in paragraphs
16.74 to 16.79. This approach is consistent wilatistical approach that regards each price

ratior; as a random variable with mean equal to the uyiderprice index.

16.7 A major problem with the unweighted average of@rielatives approach to index
number theory is that this approach does not tatlceaiccount the economic importance of
the individual commodities in the aggregate. Yo(#§)12) did advocate some form of rough
weighting of the price relatives according to thelative value over the period being
considered, but the precise form of the requirddevaveighting was not indicatédlt was
Walsh (1901, pp. 83-121; 19214, pp. 81-90), howewnvbo stressed the importance of
weighting the individual price ratios, where theigies are functions of the associated values
for the commodities in each period and each pasad be treated symmetrically in the
resulting formula:

What we are seeking is to average the variatiotisadrexchange value of one given total sum of money

in relation to the several classes of goods, tackwkeveral variations [price ratios] must be assign

weights proportional to the relative sizes of thesses. Hence the relative sizes of the clasdmstlat

the periods must be considered (Walsh (1901, p)104

Commaodities are to be weighted according to tiepartance, or their full values. But the problem of

axiometry always involves at least two periods.r€his a first period and there is a second period

which is compared with it. Price variatirisave taken place between the two, and these & to

averaged to get the amount of their variation ahale. But the weights of the commodities at the

second period are apt to be different from theiigvs at the first period. Which weights, then, tre

* Walsh (1901, p. 84) refers to Young’s contribnti@s follows:
Still, although few of the practical investigatdr@ve actually employed anything but even weightihgy
have almost always recognized the theoretical néatlowing for the relative importance of the @ifént
classes ever since this need was first pointedhesat, the commencement of the century just ended, b
Arthur Young. ... Arthur Young advised simply thaetblasses should be weighted according to their
importance.

® A price variation is a price ratio or price rélatin Walsh’s terminology.



right ones — those of the first period or thos¢hefsecond? Or should there be a combination of the
two sets? There is no reason for preferring eitheffirst or the second. Then the combination @hbo

would seem to be the proper answer. And this coatloin itself involves an averaging of the weights
of the two periods (Walsh (1921a, p. 90)).

16.8 Thus Walsh was the first to examine in some détairather intricate problefhs
involved in deciding how to weight the price relas pertaining to an aggregate, taking into
account the economic importance of the commoditi¢se two periods being considered.
Note that the type of index number formula that $&akas considering was of the form

P(r vV, wherer is the vector of price relatives which higscomponent; = pit/p° andv' is

the period value vector which hash component;' = pi'gi' for t = 0,1. His suggested

solution to this weighting problem was not comglesatisfactory but he did at least suggest
a very useful framework for a price index, as aigaleighted average of theprice

relatives. The first satisfactory solution to theighting problem was obtained by Theil
(1967, pp. 136-137) and his solution is explaimedaragraphs 16.79 to 16.93.

16.9 It can be seen that one of Walsh’s approachesdexinumber theofywas an attempt
to determine the “best” weighted average of theegorelativest;. This is equivalent to using
an axiomatic approach to try to determine the “biestex of the formP(r v°,v!). This
approach is considered in paragraphs 16.94 to 96.12

® Walsh (1901, pp. 104-105) realized that it wotd do to simply take the arithmetic average efuhlues in
the two periods,° + vi']/2, as the “correct” weight for th¢h price relative; since, in a period of rapid
inflation, this would give too much importance ke tperiod that had the highest prices and he waaotedat
each period symmetrically:

But such an operation is manifestly wrong. In thstfplace, the sizes of the classes at each paréockckoned in
the money of the period, and if it happens thaetkehange value of money has fallen, or priceeiregal have
risen, greater influence upon the result would ibergto the weighting of the second period; orri€es in general
have fallen, greater influence would be given ®\eighting of the second period. Or in a comparisetween
two countries greater influence would be giverh®weighting of the country with the higher levépdces. But
it is plain thatthe one period, or the one country, isasimportant, in our comparison between them, as the other,
and the weighting in the averaging of their weights should really be even.

However, Walsh was unable to come up with Thell8§7) solution to the weighting problem, which was
use the average expenditure shafeqs'])/2, as the “correct” weight for thi¢h price relative in the context of
using a weighted geometric mean of the price radati

" Walsh also considered basket-type approachesiéxinumber theory, as was seen in Chapter 15.

8 In paragraphs 16.94 to 16.129, rather than startith indices of the form®(r V°,v%), indices of the form
P(p°p* VY are considered. However, if the test of invar@tchanges in the units of measurement is
imposed on this index, it is equivalent to studyiindices of the fornP(r,v°,v%). Vartia (1976) also used a
variation of this approach to index number theory.



16.10 The Young and Lowe indices, discussed in Chag@eda not fit precisely into the
bilateral framework since the value or quantitygies used in these indices do not
necessarily correspond to the values or quantttigspertain to either of the periods that
correspond to the price vect@sandp®. The axiomatic properties of these two indicefiwit

respect to their price variables are studied imgaphs 16.130 to 16.134.

The levels approach to index number theory
An axiomatic approach to unilateral price indices

16.11 Denote the price and quantity of commodlity periodt by pi' andg;' respectively for
i=1,2,..nandt=0,1,...T. The variabley' is interpreted as the total amount of commoility
transacted within period In order to conserve the value of transactidris,necessary that

pi' be defined as a unit value; i.p},must be equal to the value of transactions in codityi
for periodt divided by the total quantity transacteg, In principle, the period of time should
be chosen so that variations in commodity pricekiwia period are very small compared to
their variations between period§ort = 0,1,...T, andi = 1,...n, define the value of
transactions in commodifyasvi' = pi'i' and define théotal value of transactionsin period t

as:

Vt Ezvit :z p,tq.t tzo,l,...,T. (161)
i=1 i=1

° This treatment of prices as unit values over tialews Walsh (1901, p. 96; 1921a, p. 88) and &ig922,

p. 318). Fisher and Hicks both had the idea thatahgth of the period should be short enough ab th

variations in price within the period could be igad, as the following quotations indicate:
Throughout this book “the price” of any commodity“the quantity” of it for any one year was assungacen.
But what is such a price or quantity? Sometimes @ $ingle quotation for January 1 or July 1, tsuially it is an
average of several quotations scattered througheutear. The question arises: On what principteighthis
average be constructed? Tractical answer isany kind of average since, ordinarily, the variatianidg a year,
so far, at least, as prices are concerned, adittedo make any perceptible difference in theule, whatever kind
of average is used. Otherwise, there would be gréoinsubdividing the year into quarters or monthsl we
reach a small enough period to be considered pedigta point. The quantities sold will, of coursary widely.
What is needed is their sum for the year (whiclafrse, is the same thing as the simple arithrasticage of the
per annum rates for the separate months or otheingsions). In short, the simple arithmetic averaigoth of
prices and of quantities, may be used. Or, if Wwdsth while to put any finer point on it, we make the weighted
arithmetic average for the prices, the weights d¢péire quantities sold (Fisher (1922, p. 318)).
I shall define a week as that period of time dusiigch variations in prices can be neglected. Reotetical
purposes this means that prices will be supposetiange, not continuously, but at short intervale calendar
length of the week is of course quite arbitrarytdling it to be very short, our theoretical scherae be fitted as
closely as we like to that ceaseless oscillatioitkvis a characteristic of prices in certain maskgticks (1946, p.
122)).



16.12 Using the above notation, the followiteyels version of the index number problem is
defined as follows: for=0,1,...T, find scalar number®' andQ' such that

Vi =pP'Q' t=0,1,....T. (16.2)

The numbeP' is interpreted as an aggregate petipdce level, while the numb&' is
interpreted as an aggregate petiggiantity level. The aggregate price leRgis allowed to
be a function of the periddprice vectorp', while the aggregate periadjuantity levelQ' is
allowed to be a function of the peribduantity vectorg'; hence:

P'=c(p') and Q' = f(q") t=0,1,....T. (16.3)

16.13 The functiong andf are to be determined somehow. Note that equati®:3)
requires that the functional forms for the pricg@gation functiorc and for the quantity
aggregation functiohbe independent of time. This is a reasonable remént since there is

no reason to change the method of aggregatiomaschanges.

16.14 Substituting equations (16.3) and (16.2) into ¢éigua(16.1) and dropping the
superscripts means that andf must satisfy the following functional equation & strictly

positive price and quantity vectors:

c(p)f(g)= z p. g for all p, > Gandfor allg;, >0. (16.4)
i=1

16.15 Itis natural to assume that the functia(f® andf(q) are positive if all prices and
guantities are positive:
c(p,,---,p,)>0; f(q,,...,q,) >0 if all p, > Gandallq, > 0. (16.5)

16.16 Let 1, denote am-dimensional vector of ones. Then (16.5) impliest thhenp = 1,,,
c(1,) is a positive numbeg for example, and wheq= 1,, thenf(1,) is also a positive
numberb for example; i.e., (16.5) implies thaandf satisfy:

cd,)=a>0;f@,)=b>0. (16.6)

16.17 Letp = 1, and substitute the first equation in (16.6) inqoi&ion (16.4) in order to
obtain the following equation:
f@=)—+

4 forallg, >0. (16.7)
i=1 a



16.18 Now letq = 1, and substitute the second equation in (16.6)eqgteation (16.4) in

order to obtain the following equation:

c(p) = Z% for all p, > 0. (16.8)

i=1

16.19 Finally substitute equations (16.7) and (16.8) ihie left-hand side of equation (16.4)
to obtain the following equation:
(Zn:&J (iiJ = i p. q; for all p, > Oandfor allg, > 0. (16.9)

= b )T a i=1
If nis greater than one, it is obvious that equatidhq) cannot be satisfied for all strictly
positivep andq vectors. Thus if the number of commoditiesxceeds one, then there do not

exist any functions andf that satisfy equations (16.4) and (16%).

16.20 Thus this levels test approach to index numbesrtheomes to an abrupt halt; it is
fruitless to look for price and quantity level fiions, P = ¢(p') andQ' = f(q"), that satisfy
equations (16.2) or (16.4) and also satisfy thg veasonable positivity requirements (16.5).

16.21 Note that the levels price index functiafp"), did not depend on the corresponding
quantity vectorf and the levels quantity index functidtg), did not depend on the price
vectorp'. Perhaps this is the reason for the rather negjatisult obtained above. Hence, in

the next section, the price and quantity functiaresallowed to be functions of bgthandd.

A second axiomatic approach to unilateral price inttes
16.22 In this section, the goal is to find functions2ofvariablesc(p,q) andf(p,q) such that

the following counterpart to equation (16.4) holds:

c(p,g)f(p,q) = Z P, q; for all p, > Oandfor allg, > 0. (16.10)

i=1

16.23 Again, it is natural to assume that the functiofpsg) andf(p,q) are positive if all
prices and quantities are positive:

10 Eichhorn (1978, p. 144) established this result.



c(Py,-s Py Gpy--ay) > 05 F(Py,- Py Gys---40,) >0 if all p, > Gandallg, > 0. (16.11)

16.24 The present framework does not distinguish betviieeriunctionsc andf, so it is
necessary to require that these functions satsfes‘reasonable” properties. The first
property imposed oais that this function be homogeneous of degreeroris price
components:

c(Ap,q) = A c(p,q) forallA> 0. (16.12)

Thus, if all prices are multiplied by the positivemberA, then the resulting price indexAs
times the initial price index. A similar linear hogeneity property is imposed on the
qguantity index; i.e.,f is to be homogeneous of degree one in its quactityponents:
f(p,Aq) =4 f(p,q) for allA > 0. (16.13)

16.25 Note that properties (16.10), (16.11) and (16id®)ly that the price indeg(p,q) has

the following homogeneity property with respecthie components af.

c(p.Ag) =, pAq wherel >0

_~_hAq .
=> 7 (0.0) using(16.13) (16.14)

=c(p,q) using(16.10)and(16.11).

Thusc(p,q) is homogeneous of degree 0 ingtsomponents.

16.26 A final property that is imposed on the levelscprindexc(p,q) is the following one.
Let the positive numbeid be given. Then it is asked that the price indexbariant to
changes in the units of measurement fomtlkemmodities so that the functia(p,q) has the

following property:
C(d; Py 8y Po; G/ G /dy) = C(PLes P G G- (16.15)



16.27 Itis now possible to show that properties (16.10§.11), (16.12), (16.14) and
(16.15) on the price levels functiafp,q) are inconsistent; i. e., there does not exist a

function of 2 variablesc(p,g) that satisfies these very reasonable propetties.

16.28 To see why this is so, apply the equation (16.4&}jngd; = g; for each, to obtain

the following equation:

(of(f Y o B o RN o D) I o] (f o o MY o Yo i IO A B (16.16)

If c(p,q) satisfies the linear homogeneity property (16®}hatc(Ap,q) = Ac(p,q), then
equation (16.16) implies thafp,q) is also linearly homogeneousqrso thatc(p,Aq) =
Ac(p,g). But this last equation contradicts equation 14%. which establishes the

impossibility result.

16.29 The rather negative results obtained in paragrapli3 to 16.21 indicate that it is
fruitless to pursue the axiomatic approach to gétemnination of price and quantity levels,
where both the price and quantity vector are rezghess independent variabféddence, in
the following sections of this chapter, the axiomapproach to the determination of a

bilateral price index of the formP(p°,p*,o°.q") will be pursued.

The first axiomatic approach to bilateral price indices

Bilateral indices and some early tests

16.30 In this section, the strategy will be to assuna the bilateral price index formula,
P(p° p',a°.qY), satisfies a sufficient number of “reasonabletseor properties so that the

functional form forP is determined® The word “bilateral**

refers to the assumption that the
functionP depends only on the data pertaining to the twasins or periods being

compared; i.eR is regarded as a function of the two sets of paio& quantity vectors,

™ This proposition is due to Diewert (1993d, p.M)t his proof is an adaptation of a closely edatesult due
to Eichhorn(1978, pp. 144-145).

12 Recall that in the economic approach, the prasorp is allowed to vary independently, but the
corresponding quantity vectqris regarded as being determinedpby

13 Much of the material in this section is drawnnfrsections 2 and 3 of Diewert (1992a). For moremec
surveys of the axiomatic approach see Balk (1988)Auer (2001).

4 Multilateral index number theory refers to theeavhere there are more than two situations whosespand
guantities need to be aggregated.



p°,p',o°.q", that are to be aggregated into a single numta¢rstrmmarizes the overall change

in then price ratiosp:Y/p:°, ..., pn/p’.

16.31 In this section, the value ratio decompositionrapph to index number theory will be

' o®,qY), there is a companion quantity index

taken; i.e., along with the price indexp°,p
Q(°,p*,a°,0") such that the product of these two indices eqinavalue ratio between the
two periods™ Thus, throughout this section, it is assumed FhandQ satisfy the following
product test:

VIV =P(p%pha’at) Qp°.pha’.ah). (16.17)
The period values)\, fort = 0,1 are defined by equation (16.1). As soorhadtinctional
form for the price inde® is determined, then equation (16.17) can be uséétermine the
functional form for the quantity indeQ. A further advantage of assuming that the product
test holds is that, if a reasonable test is impasethe quantity inde®, then equation
(16.17) can be used to translate this test onuhetdy index into a corresponding test on the

price index P°

16.32 If n=1, so that there is only one price and quatitye aggregated, then a natural
candidate foP is p,Y/p,” , the single price ratio, and a natural candif@ate® is g./q.” , the
single quantity ratio. When the number of commaeditor items to be aggregated is greater
than 1, then what index number theorists have derethe years is propose properties or
tests that the price indéxshould satisfy. These properties are generallyirdirhensional
analogues to the one good price index formpifdp.°. Below, some 20 tests are listed that

turn out to characterize the Fisher ideal pricexd

16.33 It will be assumed that every component of eaate@nd quantity vector is positive;
i.e.,p'>> 0 andqg >> 0, fort = 0,1. If it is desired to sef = g, the common quantity

vector is denoted by, if it is desired to sqt° = p', the common price vector is denotedpby

15 See paragraphs 15.7 to 15.25 of Chapter 15 foe mo this approach, which was initially due toheis
(1911, p. 403; 1922).

' This observation was first made by Fisher (1$1h1,400-406), and the idea was pursued by VogtQ)La8d
Diewert (1992a).

" The notatiorg >> 0, means that each component of the vegtisrpositive;q = 0, means each component of
g is non-negative ang > 0, meang] = Q, andq # QO,.



16.34 The first two tests, denoted T1 and T2, are nog eentroversial, so they will not be
discussed in detail.
T1: Positivity:*®* P(p°p'.a°.q") > 0.

T2:  Continuity:*® P(p°,p*,o’,q%) is a continuous function of its arguments.

16.35 The next two tests, T3 and T4, are somewhat mamga@versial.

T3:  Identity or constant pricestest:?® P(p,p,a°.q") = 1.
That is, if the price of every good is identicatidg the two periods, then the price index
should equal unity, no matter what the quantityeecare. The controversial aspect of this
test is that the two quantity vectors are allonete different in the teét.

Z P,

T4: Fixed basket or constant quantities test:** P(p°, p*,q,q) = 22—
Z p’q
i=1

That is, if quantities are constant during the pesiods so that’ = g* = g, then the price

index should equal the expenditure on the contasket in period 1,2 p'q , divided by

i=1

the expenditure on the basket in periodE p°q.
i=1

18 Eichhorn and Voeller (1976, p. 23) suggestedtt#ss
19 Fisher (1922, pp. 207-215) informally suggestesidssence of this test.

2 Laspeyres (1871, p. 308), Walsh (1901, p. 308)Einhhorn and Voeller (1976, p. 24) have all sisteg
this test. Laspeyres came up with this test or gntygo discredit the ratio of unit values indexiybbisch
(1871a), which does not satisfy this test. Thisigealso a special case of Fisher’s (1911, pp-4009) price
proportionality test.

2L Usually, economists assume that, given a pricéove, the corresponding quantity vectpis uniquely
determined. Here, the same price vector is usethbutorresponding quantity vectors are allowebleto
different.

22 The origins of this test go back at least 200yéathe Massachusetts legislature, which usemhstant
basket of goods to index the pay of Massachuseligess fighting in the American Revolution; seellafid
Fisher (1913). Other researchers who have suggtstddst over the years include: Lowe (1823, Aplperp.
95), Scrope (1833, p. 406), Jevons (1865), Sidgd883, pp. 67-68), Edgeworth (1925, p. 215) oafin
published in 1887, Marshall (1887, p. 363), Pier&k895, p. 332), Walsh (1901, p. 540; 1921b, p3-544),
and Bowley (1901, p. 227). Vogt and Barta (19949).correctly observe that this test is a spaxaak of
Fisher’s (1911, p. 411) proportionality test foragtity indexes which Fisher (1911, p. 405) trarsldhto a test
for the price index using the product test (15.3).



16.36 If the price indexXP satisfies Test T4 arfd andQ jointly satisfy the product test
(16.17) above, then it is easy to skdthatQ must satisfy the identity te€(p°,p,q,q) = 1
for all strictly positive vectorp’,p',g. Thisconstant quantities test for Q is also somewhat

controversial sincg’ andp® are allowed to be different.

Homogeneity tests

16.37 The following four tests, T5-T8, restrict the beioar of the price inde® as the
scale of any one of the four vectpfsp',q°.q' changes.

T5: Proportionality in current prices:**

P(p°Ap"..a") = AP(p°p",a°,q") for A > 0.
That is, if all period 1 prices are multiplied hetpositive numbet, then the new price
index isA times the old price index. Put another way, theepindex functiorP(p”,p*,o°.q")
is (positively) homogeneous of degree one in thepmments of the period 1 price vector
Most index number theorists regard this properts asry fundamental one that the index

number formula should satisfy.

16.38 Walsh (1901) and Fisher (1911, p. 418; 1922, ) $2Poposed the related
proportionality tesP(p,Ap,a°.q") = A. This last test is a combination of T3 and T5aict
Walsh (1901, p. 385) noted that this last test iespthe identity test, T3.

16.39 In the next test, instead of multiplying all petid prices by the same number, all
period O prices are multiplied by the numhber

T6: Inverse proportionality in base period prices:?®

PR p-a’a) =A7P(p°p'a’a)  ford>0.

That is, if all period O prices are multiplied hetpositive numbet, then the new price
1 01

index is 14 times the old price index. Put another way, theegindex functiorP(p’,p',a°.q")

% See Vogt (1980, p. 70).
2 This test was proposed by Walsh (1901, p. 386hH®rn and Voeller (1976, p. 24) and Vogt (19806§).

% Eichhorn and Voeller (1976, p. 28) suggestes tést.



is (positively) homogeneous of degree minus ortencomponents of the period 0 price

vectorp’.

16.40 The following two homogeneity tests can also lgarded as invariance tests.

T7: Invariance to proportional changes in current quantities:

P(p’p"a’Aq") =P(p°p".a°,a) foralld>0.
That is, if current period quantities are all mplied by the numbed, then the price index
remains unchanged. Put another way, the price ifudetionP(p°,p%,a’,q") is (positively)
homogeneous of degree zero in the components qftied 1 quantity vectar’. Vogt
(1980, p. 70) was the first to propose this?femtd his derivation of the test is of some
interest. Suppose the quantity ind@satisfies the quantity analogue to the priceTési.e.,
suppose satisfiesQ(p’,p",a°,Aq") = AQ(p"p
(16.17), it can be seen tHamust satisfy T7.

T8: Invariance to proportional changes in base quantities:?’

P(p°p".Ad%a) = P(p°p"a’q") forallA> 0.

' q°qY) for A > 0. Then, using the product test

That is, if base period quantities are all muladlby the numbet, then the price index
remains unchanged. Put another way, the price ifudetionP(p°,p%,a’,q") is (positively)
homogeneous of degree zero in the components gittied 0 quantity vectar’. If the
quantity indexQ satisfies the following counterpart to T@p°,p*,.Ad”.q") = A7~ Q(p°.p.o".q")
for all A > 0, then using equation (16.17), the correspanpgdiice indexP must satisfy T8.
This argument provides some additional justificafior assuming the validity of T8 for the
price index functior.

16.41 T7 and T8 together impose the property that tiepndexP does not depend on the
absolute magnitudes of the quantity vectafSandq’.

Invariance and symmetry tests

n n
% Fisher (1911, p. 405) proposed the relatedrgtp",o°,Aq°) = P(p%,p".a%q°) = Z p'g’ Z P’ .
= =

2" This test was proposed by Diewert (1992a, p..216)



16.42 The next five tests, T9-T13, are invariance ormeatmy tests. Fisher (1922, pp. 62-
63, 458-460) and Walsh (1901, p. 105; 1921b, p) Sé8m to have been the first researchers
to appreciate the significance of these kinds ststed-isher (1922, pp. 62-63) spoke of
fairness but it is clear that he had symmetry priogein mind. It is perhaps unfortunate that
he did not realize that there were more symmetdyiavariance properties than the ones he
proposed; if he had, it is likely that he would Bdeen able to provide an axiomatic
characterization for his ideal price index, asaa&lin paragraphs 16.53 to 16.56. The first
invariance test is that the price index should iemachanged if therdering of the
commodities is changed:

T9: Commodity reversal test (or invariance to changes in the ordering of

commodities):

P(p™, p™, o™, ™) = P(p"p",d.a)
wherep™ denotes a permutation of the components of tlitove' andg™ denotes the same
permutation of the componentsadfor t = 0,1. This test is attributable to Fisher (1922,
63)® and it is one of his three famous reversal tetse other two are the time reversal test
and the factor reversal test, which are consideedolw.

16.43 The next test asks that the index be invariashnges in the units of measurement.

T10: Invariance to changes in the units of measurement (commensurability

test):

P(a1pl,....anpl; aapt,....anpn; o qll,...an ton: an gt tgn)) =

PEL...p Pt it o it ged) forallay > 0, ...,an > 0.
That is, the price index does not change if thésurfimeasurement for each commodity are
changed. The concept of this test is attributabldetzons (1863, p. 23) and the Dutch
economist Pierson (1896, p. 131), who criticizecesal index number formulae for not
satisfying this fundamental test. Fisher (1911411) first called this test thehange of units
test; later, Fisher (1922, p. 420) called it teenmensurability test.

2 «This [test] is so simple as never to have beemtdated. It is merely taken for granted and obseérv
instinctively. Any rule for averaging the commodgimust be so general as to apply interchangealally of
the terms averaged”. (Fisher (1922, p. 63))



16.44 The next test asks that the formula be invarianhé period chosen as the base
period.

T11: Timereversal test: P(p°,p%,a0,q") = 1P(p*.p°.q"q°).
That is, if the data for periods 0 and 1 are irttanged, then the resulting price index should
equal the reciprocal of the original price indexviusly, in the one good case when the
price index is simply the single price ratio, ttest will be satisfied (as are all the other tests
listed in this section). When the number of goadgreater than one, many commonly used
price indices falil this test; e.g., the Laspeyd&/(l) price index. defined by equation
(15.5) in Chapter 15, and the Paasche (1874) pritx, Pp defined by equation (15.6) in
Chapter 15, both fail this fundamental test. Thecept of the test is attributable to Pierson
(1896, p. 128), who was so upset by the fact thatynof the commonly used index number
formulae did not satisfy this test that he propabed the entire concept of an index number
should be abandoned. More formal statements aktevere made by Walsh (1901, p. 368;
1921b, p. 541) and Fisher (1911, p. 534; 19224p. 6

16.45 The next two tests are more controversial, sineg tire not necessarily consistent
with the economic approach to index number thebngse tests are, however, quite
consistent with the weighted stochastic approachdex number theory, discussed later in
this chapter.

T12: Quantity reversal test (Quantity weights symmetry test):

P(’p"a”a) =P(R"p"a-d)-
That is, if the quantity vectors for the two pesate interchanged, then the price index
remains invariant. This property means that if diti@s are used to weight the prices in the
index number formula, then the period 0 quantigeand the period 1 quantities must
enter the formula in a symmetric or even-handednaari-unke and Voeller (1978, p. 3)

introduced this test; they called it thveight property.

16.46 The next test is the analogue to T12 applied tntty indices:
T13: Pricereversal test (price weights symmetry test):

29 This test was proposed by Diewert (1992a, p..218)



> g 2. P
= P(p°, p"a%a)=| | /P(p'p"°a°a’) (16.18)

> '’ > pig’
i=1 i=1

Thus if we use equation (16.17) to define the gtyaimdex Q in terms of the price indeR,

then it can be seen that T13 is equivalent toalewing property for the associated quantity
indexQ:

Q(p°, p1,a%a")=Q(p"p"a"a") (16.19)

That is, if the price vectors for the two periods eterchanged, then the quantity index
remains invariant. Thus if prices for the same goaithe two periods are used to weight
guantities in the construction of the quantity dden property T13 implies that these

prices enter the quantity index in a symmetric neann

Mean value tests

16.47 The next three tests, T14-T16, are mean valug. test
T14: Mean value test for prices:*

mini(pll/plo = 1.nxPE° p'a’gtx maﬁxl()il/pio i

That is, the price index lies between the minimumoeoratio and the maximum price ratio.

1,n, (16.20)

Since the price index is supposed to be interprasesbme sort of an average of tharice

ratios,pi/p’, it seems essential that the price in@esatisfy this test.

16.48 The next test is the analogue to T14 applied sntty indices:
T15: Mean value test for quantities:®

o VvV 170 i
= 1,.nK P(po,pl,qo,ql)s maxq'/q® i = 1,n,  (16.21)

whereV! is the period value for the aggregate defined by equation (1&J$ing the product

min, (qil/qio

test (16.17) to define the quantity ind@xn terms of the price indeR, it can be seen that
T15 is equivalent to the following property for tagsociated quantity inde€x

min (@/g° :i=1,..n)<Q P’ p ' a°g* ¥ maxd'd® i= 1,.n, (16.22)

%0 This test seems to have been first proposed dyhBin and Voeller (1976, p. 10).

31 This test was proposed by Diewert (1992a, p..219)



That is, the implicit quantity inde® defined byP lies between the minimum and maximum

rates of growthy*/q° of the individual quantities.

16.49 In paragraphs 15.18 to 15.32 of Chapter 15, itavgsed that it is very reasonable to
take an average of the Laspeyres and Paascheargtices as a single “best” measure of
overall price change. This point of view can bead into a test:

T16: Paasche and Laspeyres bounding test:*?

The price indeP lies between the Laspeyres and Paasche indices\dPp, defined

by equations (15.5) and (15.6) in Chapter 15.
A test could be proposed where the implicit quantitlexQ that corresponds 1 via
equation (16.17) is to lie between the LaspeyrelsRaasche quantity indic&3; andQ,
defined by equations (15.10) and (15.11) in ChapfeHHowever, the resulting test turns out

to be equivalent to test T16.

Monotonicity tests

16.50 The final four tests, T17-T20, are monotonicitstéei.e., how should the price index
P(p°,p*,a°,q") change as any component of the two price vegfbamdp® increases or as any
component of the two quantity vectafSandq® increases?

T17:Monotonicity in current prices:

PR’ p"a"a) < P(p"pd’a’) if pt <.
That is, if some period 1 price increases, therptite index must increase, so that
P(p°p",a°.qY) is increasing in the componentspdf This property was proposed by Eichhorn
and Voeller (1976, p. 23) and it is a very reasteaboperty for a price index to satisfy.

T18: Monotonicity in base prices: P(p°,p',a°.q") > P(p%,p*,a0.a") if p° < p°.
That is, if any period O price increases, thenpttiee index must decrease, so that
P(p°,p*,o°.q) is decreasing in the componentpbfThis very reasonable property was also
proposed by Eichhorn and Voeller (1976, p. 23).

T19: Monotonicity in current quantities: if g* < o?, then

32 Bowley (1901, p. 227) and Fisher (1922, p. 4a8htendorsed this property for a price index.



n n

> pigt >

= P(p’, p",a%a")<| | /P(P"p"a°9") (16.23)
Zploqio p'oqio
i=1 i=

T20: Monotonicity in base quantities: if g° < ¢, then

2. pa Y pig!
| /P(p°,p.q%0")> Zl P(p%pha%q?Y). (16.24)
plOqio ploqiz

i=1

16.51 LetQ be the implicit quantity index that correspond®tasing equation (16.17).
Then it is found that T19 translates into the failog inequality involvingQ:

Q(p° p,a%,0")<Q(p’ P a°q?) if g'<q’ (16.25)
That is, if any period 1 quantity increases, tHenimplicit quantity indexXQ that corresponds
to the price inde¥ must increase. Similarly, we find that T20 tratedanto:

Q(p’, p.,a%,9)>Q(p%pa*a’) if q°<q’ (16.26)
That is, if any period 0 quantity increases, tHenitplicit quantity indexQ must decrease.
Tests T19 and T20 are attributable to Vogt (198T7,0).

16.52 This concludes the listing of tests. The nextieaabffers an answer to the question of

1.0 .1

whether any index number formuPép°,p*,a°,q") exists that can satisfy all 20 tests.

The Fisher ideal index and the test approach

16.53 It can be shown that the only index number fornR{|#,p*,o°,q") which satisfies tests
T1-T20 is the Fisher ideal price indBx defined as the geometric mean of the Laspeyres and
Paasche indices:

1/2
R-(p% p"a%a") = {R (p°.p"a’a") R (p°p'a°a '} (16.27)

16.54 It is relatively straightforward to show that thisher index satisfies all 20 tests. The
more difficult part of the proof is to show thaetkisher index is thenly index number

formula that satisfies these tests. This part effoof follows from the fact that, ¥

3 See Diewert (1992a, p. 221).



satisfies the positivity test T1 and the three reaktests, T11-T13, théhmust equaPg. To
see this, rearrange the terms in the statemertsbditl3 into the following equation:

P/ > g’
i=1

i=1

_P(p’ p',9%a")
C : P(p', p°,a°%a%)
p’g' /> pg’
ILEYD)
_P(p%, p',q%,a")
P(p", p°,9',9°)
=P(p°, p4,a°,a")P(p° piq°qg?) using T11, the time reversakt

using T12, the quantity reversal test (16.28)

Now take positive square roots of both sides oféiqn (16.28). It can be seen that the left-
hand side of the equation is the Fisher inBei’,p*,o°.q") defined by equation (16.27) and

the right-hand side B(p°,p*,o°.q"). Thus ifP satisfies T1, T11, T12 and T13, it must equal
the Fisher ideal indeRe.

16.55 The quantity index that corresponds to the Fighiee index using the product test
(16.17) isQg , the Fisher quantity index, defined by equatib® 14) in Chapter 15.

16.56 It turns out thaPr satisfies yet another test, T21, which was Fish@921, p. 534,
1922, pp. 72-81) third reversal test (the other bsmg T9 and T11):

T21: Factor reversal test (functional form symmetry test):

n

> pigt

P(p”, p",a°.a")P@’.a’p°p)=—rv (16.29)

2.’

E
A justification for this test is the following: B(p°,p',q°.q") is a good functional form for the
price index, then, if the roles of prices and qiiestare reversed®(q’,q*,p’,p') ought to be a
good functional form for a quantity index (whichesgs to be a correct argument) and thus
the product of the price indéXp°,p',a°,g") and the quantity inde®(p°’,p*.a°.q") =
P(c°,g",p°,p%) ought to equal the value ratid' / \V°. The second part of this argument does
not seem to be valid, and thus many researcherdluwweears have objected to the factor
reversal test. Nevertheless, if T21 is accepteatll@asic test, Funke and Voeller (1978, p.
180) showed that the only index number functgp’,p*,o°,a") which satisfies T1
(positivity), T11 (time reversal test), T12 (quaytieversal test) and T21 (factor reversal test)
is the Fisher ideal indeR- defined by equation (16.27). Thus the price realgest T13 can



be replaced by the factor reversal test in ordebtain a minimal set of four tests that lead to

the Fisher price inde¥

The test performance of other indices

16.57 The Fisher price indeRr satisfies all 20 of the tests T1-T20 listed abaVaich tests
do other commonly used price indices satisfy? RdéoalLaspeyres indeRR_ defined by

equation (15.5), the Paasche in@Rdefined by equation (15.6), the Walsh ind&xdefined
by equation (15.19) and the Tornqvist ind&xdefined by equation (15.81) in Chapter 15.

16.58 Straightforward computations show that the Paaacokle_aspeyres price indicds,
andPp, fail only the three reversal tests, T11, T12 a&t8. Since the quantity and price
reversal tests, T12 and T13, are somewhat cons@end hence can be discounted, the test
performance oP_andPp seems at first sight to be quite good. The faitfrthe time reversal

test, T11, is nevertheless a severe limitation@atz with the use of these indices.

16.59 The Walsh price index®\, fails four tests: T13, the price reversal tedt5,Tthe
Paasche and Laspeyres bounding test; T19, the orooiby in current quantities test; and

T20, the monotonicity in base quantities test.

16.60 Finally, the Tornqvist price indeRy fails nine tests: T4 (the fixed basket test), the
guantity and price reversal tests T12 and T13, (fdi®& mean value test for quantities), T16
(the Paasche and Laspeyres bounding test) anduhenbnotonicity tests T17 to T20. Thus
the Tornqvist index is subject to a rather highufa rate from the viewpoint of this

axiomatic approach to index number thedry.

16.61 The tentative conclusion that can be drawn froenabove results is that, from the
viewpoint of this particular bilateral test apprbdo index numbers, the Fisher ideal price

index P appears to be “best” since it satisfies all 2@stebhe Paasche and Laspeyres indices

34 Other characterizations of the Fisher price incix be found in Funke and Voeller (1978) and B2985;
1995).

% |t is shown in Chapter 19, however, that the T@ist index approximates the Fisher index quitselp
using “normal” time series data that are subjecetatively smooth trends. Hence, under these waistances,
the Torngvist index can be regarded as passingQ@hests to a reasonably high degree of approximati



are next best if we treat each test as being ggimafiortant. Both of these indices, however,
fail the very important time reversal test. The agmng two indices, the Walsh and Térngvist
price indices, both satisfy the time reversal begtthe Walsh index emerges as being “better”
since it passes 16 of the 20 tests whereas theVigtronly satisfies 11 test8.

The additivity test

16.62 There is an additional test that many nationabine accountants regard as very
important: theadditivity test. This is a test or property that is placed onitgicit quantity
indexQ(p°,p*,a°,q") that corresponds to the price inde°,p*,o°,q") using the product test
(16.17). This test states that the implicit qugnntdex has the following form:

n
Z P Qil
Q(p’, p.a’,q") =E—— (16.30)

. Puln

m=1
where the common across-periguisce for commodityi, pi* for i = 1,...n, can be a function
of all 4n prices and quantities pertaining to the two peyiodsituations under consideration,
p°,pL.a°.q" In the literature on making multilateral comparis (i.e., comparisons between
more than two situations), it is quite common teuase that the quantity comparison
between any two regions can be made using theegional quantity vectorsy’ andg’, and

a common reference price vectpt,= (pi*,...,pn%). %

16.63 Obviously, different versions of the additivitystecan be obtained if further
restrictions are placed on precisely which varialgach reference pripgr depends. The
simplest such restriction is to assume that g@gctiepends only on the commoditprices
pertaining to each of the two situations under iteration,p,’ andpi. If it is further

assumed that the functional form for the weighfungction is the same for each commodity,

% This assertion needs to be qualified: there aeynother tests that we have not discussed, and pri
statisticians might hold different opinions regaglthe importance of satisfying various sets asteSther tests
are discussed by Auer (2001; 2002), Eichhorn anellgin(1976), Balk (1995) and Vogt and Barta (1997)
among others. It is shown in paragraphs 16.10513b that the Térnqvist index is ideal when coesed
under a different set of axioms.

37 Hill (1993, p. 395-397) termed such multilaterethodsthe block approach while Diewert (1996a, pp. 250-
251) used the term@verage price approaches. Diewert (1999b, p. 19) used the teadditive multilateral system.
For axiomatic approaches to multilateral index nantheory, see Balk (1996a; 2001) and Diewert (b399



so thatpi* = m(p°,pit) fori = 1,...n, then we are led to theequivocal quantity index
postulated by Knibbs (1924, p. 44).

16.64 The theory of thenequivocal quantity index (or thepure quantity index)® parallels
the theory of the pure price index outlined in gaagphs 15.24 to 15.32 of Chapter 15. An
outline of this theory is given here. Let the pguantity indexQx have the following

functional form:

n

2.am(p’, p)

Qc(p% p-.q° qh) =2 (16.31)
> aem(py, pe)
k=1

It is assumed that the price vectpfsandp® are strictly positive and the quantity vectqfs
andg' are non-negative but have at least one positimgpoment® The problem is to
determine the functional form for the averagingction mif possible. To do this, it is
necessary to impose some tests or properties guutieequantity index)x. As was the case
with the pure price index, it is very reasonablask that the quantity index satisfy tinae
reversal test:

1
Qc(p% pH,a°%,aY)

Qc(p" p°, 09" = (16.32)

16.65 As was the case with the theory of the unequivpdak index, it can be seen that if
the unequivocal quantity ind&x is to satisfy the time reversal test (16.32),rttean
function in equation (16.31) must bgmmetric. It is also asked th&x satisfy the following

invariance to proportional changesin current prices test.

Qc(p”Ap",9%.9") =Q (p°, p*,q°,q") forall p°, p*,q°,g*andall A >0. (16.33)

16.66 The idea behind this invariance test is this:ghantity indexQ«(p°,p*,a°.q") should
depend only on thedlative prices in each period and it should not depentheramount of
inflation between the two periods. Another wayrtterpret test (16.33) is to look at what the

test implies for the corresponding implicit pricelex, Pk, defined using the product test

% Diewert (2001) used this term.

% |t is assumed tham(a,b) has the following two propertiesy(a,b) is a positive and continuous function,
defined for all positive numbeesandb, andm(a,a) = a for alla > 0.



(16.17). It can be shown that(k satisfies equation (16.33), then the corresponidimjcit
price indexP,x will satisfy test T5 above, thaoportionality in current pricestest. The two
tests, (16.32) and (16.33), determine the predcisetional form for the pure quantity index
Qx defined by equation (16.31): tpare quantity index or Knibbs’unequivocal quantity
index Qx must be the Walsh quantity ind&,*° defined by:

n

2. Gp’p
Qv(p"pha" g =2—— (16.34)
O/ P P

k=1
16.67 Thus with the addition of two tests, the pure @iiltdexPx must be the Walsh price
index Py defined by equation (15.19) in Chapter 15 and withaddition of the same two
tests (but applied to quantity indices insteadrafepindices), the pure quantity ind€x
must be the Walsh quantity ind€x defined by equation (16.34). Note, however, that t
product of the Walsh price and quantity indicesdsequal to the expenditure rath}/\V°.
Thus believers in the pure or unequivocal price gumahtity index concepts have to choose
one of these two concepts; they both cannot appiylgneously**

16.68 If the quantity indexQ(p°,p*,a’,q") satisfies the additivity test (16.30) for somier
weightsp;*, then the percentage change in the quantity agdesQ(p°,p*,a°,q") - 1, can be

rewritten as follows:

n

> pq > pg - paas

Q(pO' pl'qo,ql)_l= in:l _1: i=1 - m=1 =Zvvl(qll_qI0) (16.35)
I G P N =
m=1 m=1
where thewveight for commodityi, w;, is defined as
w=—P - j=1.n (16.36)
> Pulh
m=1

0 This is the quantity index that corresponds gHce index 8 defined by Walsh (1921a, p. 1048, s
equation (15.19)

*1 Knibbs (1924) did not notice this point.



Note that the change in commodiitgoing from situation O to situation 1dg — g°. Thus the
ith term on the right-hand side of equation (16i8%he contribution of the change in
commodityi to the overall percentage change in the aggregaitey fromperiod 0 to 1.
Business analysts often want statistical agenoigsdvide decompositions such as equation
(16.35) so that they can decompose the overallgghanan aggregate into sector-specific
components of chand@Thus there is a demand on the part of users ftitiael quantity

indices.

16.69 For the Walsh quantity index defined by equatib®.84), thath weight is

W, =—————; i=1,...0n (16.37)

DX NCTS

Thus the Walsh quantity indé€¥,y has a percentage decomposition into componengelsan
of the form of equation (16.35), where the weigires defined by equation (16.37).

16.70 It turns out that the Fisher quantity ind@x defined by equation (15.14) in Chapter
15, also has an additive percentage change decdopas the form given by equation

(16.35)* Theith weight we for this Fisher decomposition is rather complidaded depends

on the Fisher quantity inde@=(p°,p*,a°,q") as follows**

. =2 +(Q) Wil; i=1,..n (16.38)
' 1+ Q¢

whereQr is the value of the Fisher quantity ind&(p°,p*,a°,q%), and the period

normalized price for commodiiyw, is defined as the peridagricep;' divided by the period

t expenditure on the aggregate:

“2 Business and government analysts also often dearaadalogous decomposition of the change in price
aggregate into sector-specific components thatigdd

*3 The Fisher quantity index also has an additi@d®osition of the type defined by equation (16.30)
attributable to Van ljzeren (1987, p. 6). Titlereference pricp* is defined as
p = [(1/2)pi° + (1/2)pi1]/|3F (poplqoql) fori = 1,...n and whereP: is the Fisher price index. This

decomposition was also independently derived byhBxilov (1997). The Van ljzeren decomposition for the
Fisher quantity index is currently being used by tiS Bureau of Economic Analysis; see Moulton aesk#
(1999, p. 16) and Ehemann, Katz and Moulton (2002).

** This decomposition was obtained by Diewert (20G2al Reinsdorf, Diewert and Ehemann (2002). For an
economic interpretation of this decomposition, Beawert (2002a).



t
w=—P . t=01:i= 1.1 (16.39)

16.71 Using the weightsv. defined by equations (16.38) and (16.39), thevfailhg exact

decomposition is obtained for the Fisher ideal gtyamdex:
Q:-(p%, p.a%9Y)-1=> w. @'-q°) (16.40)
i=1

Thus the Fisher quantity index has an additivegreage change decomposititn.

16.72 Because of the symmetric nature of the Fisheemiw quantity indices, it can be
seen that the Fisher price indexdefined by equation (16.27) also has the follovadditive

percentage change decomposition:
P-(p°, p"0%q) -1=)> v (p' - p) (16.41)
i=1
where the commodityweight v, is defined as

O+ (P.)2V!
v =9 RV (16.42)
T 1+P

! q®aY), and the periotinormalized

wherePr is the value of the Fisher price ind®(p°,p
quantity for commodity, vi', is defined as the periadjuantityq' divided by the periotl

expenditure on the aggregate:

V-t

=—9% - t=01;i=1.n (16.43)
PrChn

16.73 The above results show that the Fisher price aaatiy indices have exact additive
decompositions into components that give the doution to the overall change in the price

(or quantity) index of the change in each priceqantity).

% To verify the exactness of the decompositionsstite equation (16.38) into equation (16.40) solye the
resulting equation foR. It is found that the solution is equal@g defined by equation (15.14) in Chapter 15.



The stochastic approach to price indices

The early unweighted stochastic approach

16.74 The stochastic approach to the determinationeptice index can be traced back to
the work of Jevons (1863; 1865) and Edgeworth (1888r 100 years ad8.The basic idea
behind the (unweighted) stochastic approach isetheln price relativegy/p fori = 1,2,...n
can be regarded as an estimate of a common inflegieo between periods 0 and'1.
It is assumed that
P
3

wherea is the common inflation rate and theare random variables with mean 0 and

=a+g;i=12,..n (16.44)

varianceo?. The least squares or maximum likelihood estimftoa is the Carli (1764)

price indexPc defined as

o nowlp
P(p°,p) =D =% (16.45)
= NP
A drawback of the Carli price index is that it dows satisfy the time reversal test, i.e.,

Pc(p',p°) # 1/ Po(p°ph).*

16.75 Now change the stochastic specification and asshate¢he logarithm of each price
relative, Inpi*/p°), is an unbiased estimate of the logarithm ofiifiation rate between
periods 0 and 13 say. The counterpart to equation (16.44) is:

In(ﬁzj:ﬂhsi; i=1,2,...n (16.46)

wheref = Ina and theg; are independently distributed random variables wiean 0 and

varianceo®. The least squares or maximum likelihood estimfaop is the logarithm of the

“® For references to the literature, see Diewer®859 pp. 37-38; 1995a; 1995b).

“"“In drawing our averages the independent flucaratiwill more or less destroy each other; the eqeired
variation of gold will remain undiminished” (Jevo(i863, p. 26)).

8 In fact, Fisher (1922, p. 66) noted tRa(p’,p")Pc(p’,p% > 1 unless the period 1 price vecpdiis
proportional to the period 0 price vecfdr i.e., Fisher showed that the Carli index hasfaile upward bias.
He urged statistical agencies not to use this ftam&/alsh (1901, pp. 331, 530) also discoveredréssilt for
the casen = 2.



geometric mean of the price relatives. Hence tleesponding estimate for the common

inflation ratea® is the Jevons (1865) price indexdefined as follows:
0 L olp
P(p%, P =[] 1= (16.47)
’ I_J P’

16.76 The Jevons price indd¥ does satisfy the time reversal test and henceighmore
satisfactory than the Carli indé€. Both the Jevons and Carli price indices neveetl
suffer from a fatal flaw: each price relatipé/p’ is regarded as being equally important and
is given an equal weight in the index number foaeu|16.45) and (16.47). John Maynard
Keynes was particularly critical of this unweightdchastic approach to index number
theory® He directed the following criticism towards thisproach, which was vigorously
advocated by Edgeworth (1923):

Nevertheless | venture to maintain that such ide&gh | have endeavoured to expound above as
fairly and as plausibly as | can, are root-and-bhe@rroneous. The “errors of observation”, the itfau
shots aimed at a single bull's eye” conceptiorhefindex number of prices, Edgeworth’s “objective
mean variation of general prices”, is the resultaffusion of thought. There is no bull's eye. Tehier
no moving but unique centre, to be called the garmice level or the objective mean variation of
general prices, round which are scattered the ngomiite levels of individual things. There areth#
various, quite definite, conceptions of price lsvel composite commodities appropriate for various
purposes and inquiries which have been scheduledealand many others too. There is nothing else.

Jevons was pursuing a mirage.

What is the flaw in the argument? In the first glatcassumed that the fluctuations of individuates
round the “mean” are “random” in the sense requingthe theory of the combination of independent
observations. In this theory the divergence of ‘miservation” from the true position is assumed to

have no influence on the divergences of other “nlag®ns”. But in the case of prices, a movement in

9 Greenlees (1999) pointed out that although)@i-," In(p/p?°) is an unbiased estimator By the
corresponding exponential of this estimatydefined by equation (16.47), will generally notdreunbiased
estimator forn under our stochastic assumptions. To see this, el p,/p. Taking expectations, we have:
Ex =B = Ina. Define the positive, convex functidmf one variable by f(x) = €. By Jensen’s (1906)
inequality, Ef(x) = f(Ex). Lettingx equal the random variabg this inequality become&(p;'/p;%) = Ef(x) =
f(Ex;) =f(B) =€® = €"% = a. Thus for eaci, E(p/p%) = a, and it can be seen that the Jevons price indix wi
generally have an upward bias under the usual astichassumptions.

0 Walsh (1901, p. 83) also stressed the importafipeoper weighting according to the economic intaoce
of the commodities in the periods being compar@dit‘to assign uneven weighting with approximationhe
relative sizes, either over a long series of yeaffsr every period separately, would not requingchnadditional
trouble; and even a rough procedure of this sortlevgield results far superior to those yieldedelygn
weighting. It is especially absurd to refrain fraising roughly reckoned uneven weighting on the gdothat it
is not accurate, and instead to use even weightihih is much more inaccurate.”



the price of one commodity necessarily influendesrmovement in the prices of other commodities,
whilst the magnitudes of these compensatory movésragpend on the magnitude of the change in
expenditure on the first commodity as compared wWithimportance of the expenditure on the
commodities secondarily affected. Thus, insteatinafependence”, there is between the “errors” m th
successive “observations” what some writers on @lodlty have called “connexity”, or, as Lexis

expressed it, there is “sub-normal dispersion”.

We cannot, therefore, proceed further until we havenciated the appropriate law of connexity. But
the law of connexity cannot be enunciated withefémence to the relative importance of the
commodities affected—which brings us back to thebpem that we have been trying to avoid, of

weighting the items of a composite commodity (Key/(E930, pp. 76-77)).

The main point Keynes seemed to be making in theealuotation is that prices in the
economy are not independently distributed from edhlr and from quantities. In current
macroeconomic terminology, Keynes can be intergragesaying that a macroeconomic
shock will be distributed across all prices andmjtigs in the economy through the normal
interaction between supply and demand; i.e., thidbg workings of the general equilibrium
system. Thus Keynes seemed to be leaning towaedscttnomic approach to index number
theory (even before it was developed to any gne&ing), where quantity movements are
functionally related to price movements. A seconthpthat Keynes made in the above
guotation is that there is no such thinglesinflation rate; there are only price changes that
pertain to well-specified sets of commodities ansactions; i.e., the domain of definition of
the price index must be carefully specifiédh final point that Keynes made is that price
movements must be weighted by their economic inapes; i.e., by quantities or

expenditures.

16.77 In addition to the above theoretical criticism&ykes also made the following strong

empirical attack on Edgeworth’s unweighted stodhasgiproach:
The Jevons—Edgeworth “objective mean variationesfagal prices”, or “indefinite” standard, has
generally been identified, by those who were nalag as Edgeworth himself was to the subtleties o
the case, with the purchasing power of money—if/dot the excellent reason that it was difficult to
visualise it as anything else. And since any retside index number, however weighted, which

covered a fairly large number of commodities couldaccordance with the argument, be regarded as a

°1 See paragraphs 15.7 to 15.17 in Chapter 15 ftitiadal discussion on this point.



fair approximation to the indefinite standard,eemed natural to regard any such index as a fair

approximation to the purchasing power of money.also

Finally, the conclusion that all the standards “ecim much the same thing in the end” has been
reinforced “inductively” by the fact that rival ieet numbers (all of them, however, of the wholesale
type) have shown a considerable measure of agrdemitbrone another in spite of their different
compositions ... On the contrary, the tables givesval{pp. 53, 55) supply strong presumptive
evidence that over long period as well as overtgheniod the movements of the wholesale and of the

consumption standards respectively are capableinofjlwidely divergent (Keynes (1930, pp. 80-81)).

In the above quotation, Keynes noted that the prepts of the unweighted stochastic
approach to price change measurement were comfloytdte fact that all of the then existing
(unweighted) indices of wholesale prices showedadbgosimilar movements. Keynes
showed empirically, however, that his wholesalegmdices moved quite differently from

his consumer price indices.

16.78 In order to overcome the above criticisms of theveighted stochastic approach to
index numbers, it is necessary to:

* have a definite domain of definition for the indexmber;

« weight the price relatives by their economic impare>?

Alternative methods of weighting are discussedefbllowing sections.

The weighted stochastic approach

16.79 Walsh (1901, pp. 88-89) seems to have been thidritlex number theorist to point
out that a sensible stochastic approach to measprice change means that individual price
relatives should be weighted according to theineoaic importance or thetransactions

value in the two periods under consideration:
It might seem at first sight as if simply everygariquotation were a single item, and since every
commodity (any kind of commodity) has one price4gtion attached to it, it would seem as if price-
variations of every kind of commaodity were the $ingem in question. This is the way the question
struck the first inquirers into price-variationshevefore they used simple averaging with even

weighting. But a price-quotation is the quotatidriee price of a generic name for many articlest an

2 Walsh (1901, pp. 82-90; 1921a, pp. 82-83) algeaibd to the lack of weighting in the unweightéachastic
approach to index number theory.



one such generic name covers a few articles, aoth@ancovers many. ... A single price-quotation,
therefore, may be the quotation of the price ofiadned, a thousand, or a million dollar's worthfs, o
the articles that make up the commodity namedwvétight in the averaging, therefore, ought to be
according to these money-unit’s worth (Walsh (1921a 82-83)).

But Walsh did not give a convincing argument onctlyehow these economic weights

should be determined.

16.80 Henri Theil (1967, pp. 136-137) proposed a sotutmthe lack of weighting in the
Jevons indexP; defined by equation (16.47). He argued as folldsvgpose we draw price
relatives at random in such a way that each dofl@xpenditure in the base period has an

equal chance of being selected. Then the probabilit we will draw theth price relative is

equal tos’ = pioqio/z::l pJg’, the period 0 expenditure share for commodifjhen the

overall mean (period 0 weighted) logarithmic prateange iszi":lsf’ In(p*/ p°) .>* Now

repeat the above mental experiment and draw peleéives at random in such a way that
each dollar of expenditure in period 1 has an egrabability of being selected. This leads to

the overall mean (period 1 weighted) logarithmicgichange oizillslln(p,l/ p°).>*

16.81 Each of these measures of overall logarithmicgpeitange seems equally valid, so we
could argue for taking a symmetric average of w@ measures in order to obtain a final

single measure of overall logarithmic price charigeei®

argued that a “nice” symmetric
index number formula can be obtained if the proliglof selection for theath price relative
is made equal to the arithmetic average of theogediand 1 expenditure shares for

commodityn.

3 |n Chapter 19, this index is called tometric Laspeyresindex, Pg,. Vartia (1978, p. 272) referred to this
index as theogarithmic Laspeyresindex. Yet another name for the index is theese weighted geometric index.

** |n Chapter 19, this index is called tometric Paasche index, Pgp. Vartia (1978, p. 272) referred to this
index as théogarithmic Paasche index. Yet another name for the index is therent period weighted
geometric index.

> “The price index number defined in (1.8) and (LiS¢s then individual logarithmic price differences as the
basic ingredients. They are combined linearly byanseof a two-stage random selection proceduret, Fies
give each region the same chance % of being sdlestel second, we give each dollar spent in trectsd
region the same chancertl/or 1/n,) of being drawn” (Theil (1967, p. 138)). The éas (1.8) and (1.9) are
the geometric Laspeyres and Paasche indexes.



Using these probabilities of selection, Theil’'salimeasure of overall logarithmic price
change was

InB(p° p".q°.q")=

n 1
%(3% s In(%] (16.48)
i=1 i

Note that the indeft defined by equation (16.48) is equal to the Toistgndex defined by
equation (15.81) in Chapter 15.

16.82 A statistical interpretation of the right-handesiof equation (16.48) can be given.
Define theith logarithmic price ratio; by:

pl
r=In (—'Oj fori=1,..n (16.49)

Now define the discrete random varialiksay, as the random variable which can take on the
valuesr; with probabilitiesa = (1/2)[s° + s'] for i = 1,...n. Note that, since each set of
expenditure shares? ands’, sums to one ovér the probabilitiesy will also sum to one. It
can be seen that the expected value of the disenetiom variabl® is
8 I o’
EIR=2. A =2,508 +3)'”(?:°j (16.50)
=InR(p’, p.a°.9").
Thus the logarithm of the indd¥: can be interpreted #ise expected value of the distribution
of the logarithmic priceratios in the domain of definition under consideratiomene then
discrete price ratios in this domain of definitiare weighted according to Theil’s probability

weights,g = (1/2)[s° +s'] fori = 1,...n.

16.83 Taking antilogs of both sides of equation (16.48¢, Tornqvist (1936; 1937) Theil
price index Py, is obtained® This index number formula has a number of googerties. In
particular,Pr satisfies the proportionality in current pricestt€5 and the time reversal test
T11, discussed above. These two tests can be aigastify Theil’s (arithmetic) method of

forming an average of the two sets of expenditheges in order to obtain his probability

% The sampling bias problem studied by Greenle@89)L (see footnote 49 above) does not occur iptasent
context because there is no sampling involved fmitien (16.50): the sum of thg'q' overi for each period
is assumed to equal the value aggreyafer periodt.



weights,a = (1/2)[s° + s for i = 1,...n. Consider the followingymmetric mean class of
logarithmic index number formulae:

n 1
In P(p°, pl,q°,q1)EZm(s°,sl)ln[%j (16.51)
i=1 i

.
wherem(s®,s?) is a positive function of the period 0 and 1 exgiure shares on commodity
i, s? ands? respectively. In order fdPs to satisfy the time reversal test, it is necessaay
the functionm be symmetric. Then it can be shoWthat forPs to satisfy test T5m must be
the arithmetic mean. This provides a reasonabbngtjustification for Theil’s choice of the

mean function.

16.84 The stochastic approach of Theil has another "ragmmetry property. Instead of
considering the distribution of the logarithmicgariratios; = In pi/p°, we could also
consider the distribution of the logarithms of tleeiprocals of the price ratios, say:

1

0 -1
t, Eln&l=ln(—oj =B = fori=1,..n (16.52)

0 1

P

The symmetric probabilityg = (1/2)[s° + s7], can still be associated with tﬁ%logarithmic
reciprocal price ratig) fori = 1,...n. Now define the discrete random variaflesay, as the
random variable which can take on the valyesth probabilitiesg = (1/2)[s° + s'] for i =

1,...n. It can be seen that the expected value of treaetessrandom variabl€is

E[T] = _gpi f

=E[R] using(16.50) (16.53)

==Y pt, using(16.52)

i=1
=-InPk(p° p'.q", ).
Thus it can be seen that the distribution of theloam variabl€eT is the same as the
distribution of the random variable butT takes on values of opposite sign from R. Hence it
does not matter whether the distribution of theiogl logarithmic price ratios; = In pi'/p?,
is considered or the distribution of the log ofitlreciprocalst; = In p%pi, is considered:

essentially the same stochastic theory is obtained.

" See Diewert (2000) and Balk and Diewert (2001).



16.85 It is possible to consider weighted stochasticapaghes to index number theory
where the distribution of the price ratips/p’, is considered rather than the distribution of
the logarithmic price ratios, In*/p°. Thus, again following in the footsteps of Theilppase
that price relatives are drawn at random in sualaythat each dollar of expenditure in the
base period has an equal chance of being selected. Then thalpiiby that theth price
relative will be drawn is equal &, the period 0 expenditure share for commoiifhus the
overall mean (period O weighted) price change is:
n 1

R(P°, pl,q°,ql)=iZ_l)s°%'o (16.54)

which turns out to be the Laspeyres price indxThis stochastic approach is the natural

one for studyingampling problems associated with implementing a Laspeyres pricexnd

16.86 Now repeat the above mental experiment and drae pelatives at random in such a
way that each dollar of expenditure in period 1 &agqual probability of being selected.

This leads to the overall mean (period 1 weightedephange equal to:

n 1
P (0%, P50% 0 =Y s (16.55)

i=1 i

This is known as the Palgrave (1886) index numbentita>®

16.87 It can be verified that neither the LaspeyresRalgrave price indices satisfy the time
reversal test, T11. Thus, again following in thet$teps of Theil, it might be attempted to
obtain a formula that satisfied the time reversat by taking a symmetric average of the two

sets of shares. Thus consider the following clasgrofmetric mean index number formulae:

i=1

n 1
P.(p° p"0°.q") EZm(SO,sl)% (16.56)

wherem(s®,s?) is a symmetric function of the period 0 and lengiture shares for
commodityi, s° ands’ respectively. In order to interpret the right haside of equation

(16.56) as an expected value of the price raifgg’, it is necessary that

Z m(s’.s) =1 (16.57)

%8 |t is formula number 9 in Fisher's (1922, p. 468ling of index number formulae.



In order to satisfy equation (16.57), howevemust be the arithmetic meahWith this

choice ofm, equation (16.56) becomes the following (unnanied@x number formulaRy:

n 1 1
AGHRCEPEP RO sl)% (16.58)

i=1

Unfortunately, the unnamed ind® does not satisfy the time reversal test eitfer.

16.88 Instead of considering the distribution of thecpriatiosp'/p°, the distribution of the

reciprocals of these price ratios could be considered. Theteoparts to the asymmetric

indices defined earlier by equations (16.54) ar&i58) are nowd_s’(p’/ pf) and

i=1
> s'(p’/ p), respectively. These are (stochastic) price indiisg backwards from
i=1

period 1 to 0. In order to make these indices caatpa with other previous forward-looking
indices, take the reciprocals of these indices ¢Wieads to harmonic averages) and the

following two indices are obtained:

P (p°, p"q%q") = 5= (16.59)

R (P, P'0°,0) = = ———
238 '; Z#(gj (16.60)
=R(p"p"0%a)

using equation (15.9) in Chapter 15. Thus the recgl stochastic price index defined by
equation (16.60) turns out to equal the fixed baBleasche price indeRp. This stochastic
approach is the natural one for studying samplimafplems associated with implementing a
Paasche price index. The other asymmetrically wedyreciprocal stochastic price index
defined by the formula (16.59) has no author’'s nasssciated with it but it was noted by

%9 For a proof of this assertion, see Balk and Di¢{2001).

% In fact, this index suffers from the same upwhaiass as the Carli index in theg(p®,p".a°.a")Pu(p*,p%.q"q%) =

1. To prove this, note that the previous inequatitgquivalent toR.(p*,p%,q",g%]™ < Pu(p°,p*,a°,.q") and this
inequality follows from the fact that a weightedimanic mean of positive numbers is equal or less than the
corresponding weighted arithmetic mean; see Harityewood and Pélya (1934, p. 26).



Fisher (1922, p. 467) as his index number form@laViartia (1978, p. 272) called this index

the harmonic Laspeyresindex and his terminology will be used.

16.89 Now consider the class of symmetrically weighteciprocal price indices defined as:
1

im(s(’,al)(pgj

P

where, as usuai(s’,s') is a homogeneous symmetric mean of the periattiQla

(16.61)

P.(p% pha°%q") =

expenditure shares on commodityiowever, none of the indices defined by equations
(16.59) to (16.61) satisfies the time reversal test

16.90 The fact that Theil's index number formuta satisfies the time reversal test leads to a

preference for Theil's index as the “best” weighséachastic approach.

16.91 The main features of the weighted stochastic atrdo index number theory can be
summarized as follows. It is first necessary t&wo periods and a transactions domain of
definition. As usual, each value transaction farreaf then commodities in the domain of
definition is split up into price and quantity coamgents. Then, assuming there are no new
commodities or no disappearing commodities, theza arice relatives;/p° pertaining to
the two situations under consideration along witn ¢orrespondingrZexpenditure shares.
The weighted stochastic approach just assumeshibsdn relative prices, or some
transformation of these price relativé{p;'/p°), have a discrete statistical distribution, where
theith probability,a = m(s®,s%), is a function of the expenditure shares pemajnd
commodityi in the two situations under consideratighands®. Different price indices
result, depending on how the functidremdm are chosen. In Theil's approach, the
transformation functiomis the natural logarithm and the mean functiois the simple

unweighted arithmetic mean.

16.92 There is a third aspect to the weighted stochagiizoach to index number theory: it
has to be decided whsihgle number best summarizes the distribution of th@ossibly
transformed) price relatives. In the above analyesmean of the discrete distribution was
chosen as the “best” summary measure for the loigtoin of the (possibly transformed) price
relatives; but other measures are possible. Incpéat, theweighted median or various



trimmed means are often suggested as the “best” measure ofat¢atrdency because these
measures minimize the influence of outliers. Dethdliscussion of these alternative
measures of central tendency is, however, beyomddbpe of this chapter. Additional
material on stochastic approaches to index nunttgenry and references to the literature can
be found in Clements and Izan (1981; 1987), Seiameand Rao (1994), Diewert (1995b),
Cecchetti (1997) and Wynne (1997; 1999).

16.93 Instead of taking the above stochastic approaaidi&x number theory, it is possible
to take the same raw data that is used in thisoagjprbut use an axiomatic approach. Thus,
in the following section, the price index is regadldas a value-weighted function of the

price relatives and the test approach to index raurtii®eory is used in order to determine the
functional form for the price index. Put anotheywthe axiomatic approach in the next
section looks at thproperties of alternative descriptive statistics that aggteghae individual
price relatives (weighted by their economic impoci) into summary measures of price
change in an attempt to find the “best” summarysuneaof price change. Thus the axiomatic
approach pursued below can be viewed as a brartble ttheory of descriptive statistics.

The second axiomatic approach to bilateral price idices
The basic framework and some preliminary tests

16.94 As mentioned in paragraphs 16.1 to 16.10, one a@sWs approaches to index

number theory was an attempt to determine the "lesighted average of the price relatives,
r.%! This is equivalent to using an axiomatic appra@ctny to determine the “best” index of

the formP(r v°v'), whereV® andv' are the vectors of expenditures onth®smmodities

®1 Fisher also took this point of view when deseriphis approach to index number theory:
An index number of the prices of a number of comitieslis an average of their price relatives. Tdefinition
has, for concreteness, been expressed in termge§pBut in like manner, an index number can beutated for
wages, for quantities of goods imported or expgréedi, in fact, for any subject matter involvingetfigent
changes of a group of magnitudes. Again, this dafimhas been expressed in terms of time. But dexmumber
can be applied with equal propriety to comparidoetsveen two places or, in fact, to comparisons éetwthe
magnitudes of a group of elements under any onefsitcumstances and their magnitudes under ansttef
circumstances (Fisher (1922, p. 3)).

In setting up his axiomatic approach, Fisher impase@oms on the price and quantity indices writisn

functions of the two price vectons’ andp’, and the two quantity vectorg’, andq®; i.e., he did not write his

price index in the fornP(r,v°,v*) and impose axioms on indices of this type. Ofrsepin the end, his ideal price

index turned out to be the geometric mean of thepkgres and Paasche price indices and, as waimseen

Chapter 15, each of these indices can be writtezxpsnditure share weighted averages ofithgce relatives,

r= pillpio-



during periods 0 and %.Initially, rather than starting with indices ofetfiormP(r \°v),

indices of the fornP(p°,p*v°,v") will be considered, since this framework will inere
comparable to the first bilateral axiomatic framekvtaken in paragraphs 16.30 to 16.73. As
will be seen below, if the invariance to changethaunits of measurement test is imposed
on an index of the forR(p°,p* v’ V1), thenP(p®p',\° V') can be written in the form(r v° ).

16.95 Recall that the product test (16.17) was usecetme the quantity index

Q. p*,aC.a) = VIIVOP(R° p'.o°.q") that corresponded to the bilateral price index
P(p°,p*,a°.qY). A similar product test holds in the present feavork; i.e., given that the
functional form for the price indeR(p°,p',\° ') has been determined, then the corresponding

implicit quantity index can be defined in terms Bfas follows:

>\

Zvloj P( pO' pl,VO,Vl)

i=1

Q(p°, p',vovh) = ( (16.62)

16.96 In paragraphs 16.30 to 16.73, the price and quyanticesP(p°,p',q°,q") and
Q(p°.p'.4°,g") were determinegbintly; i.e., not only were axioms imposed Bp°,p*.o°.q"),
but they were also imposed Qtp°,p*,a°,q%), and the product test (16.17) was used to
translate these tests @ninto tests orP. In this section, this approach will not be folkeasv
only tests orP(p’,p'\°,v') will be used in order to determine the “besttprindex of this
form. Thus, there is a parallel theory for quanititices of the fornQ(q’,g*,v°,v), where it

is attempted to find the “best” value weighted ager of the quantity relatives./q°.%®

16.97 For the most part, the tests which will be imposedhe price indeR(p’,p',\°,v!) in
this section are counterparts to the tests that weposed on the price ind&p°,p*,o°,q") in

paragraphs 16.30 to 16.73. It will be assumeddteaty component of each price and value

%2 Chapter 3 in Vartia (1976) considered a variarthisf axiomatic approach.

8 |t turns out that the price index that correspotudthis “best” quantity index, defined BY °,g*V°v!) =
n n

ZVil /{ZViOQ(qO .q-,v0,vh) } , will not equal the “best” price indeR(p’,p',v°,vY). Thus the axiomatic
i=1 i=1

approach used here generagsarate “best” price and quantity indices whose produatsioot equal the value

ratio in general. This is a disadvantage of th@sd@xiomatic approach to bilateral indices comgaoethe
first approach studied above.



vector is positive; i.ep' > > Q, andV' > > Q, fort = 0,1. If it is desired to se? = V', the
common expenditure vector is denotedvbif it is desired to sgt® = p*, the common price

vector is denoted by.

16.98 The first two tests are straightforward countetgptr the corresponding tests in
paragraph 16.34.

T1:  Positivity: P(p%p' VP VY > 0

T2:  Continuity: P(p°,p',\°,V!) is a continuous function of its arguments

T3:  Identity or constant pricestest: P(p,p,\° V') = 1
That is, if the price of every good is identicalidg the two periods, then the price index
should equal unity, no matter what the value vecéoe. Note that the two value vectors are
allowed to be different in the above test.

Homogeneity tests

16.99 The following four tests restrict the behaviouttlod price indeXP as the scale of any
one of the four vectons’ p* \°,v* changes.

T4: Proportionality in current prices

PP°Apt VPV = AP(R° pt VP VY for A > 0
That is, if all period 1 prices are multiplied hetpositive numbet, then the new price
index isA times the old price index. Put another way, theepindex functiorP(p®,p'\° V') is
(positively) homogeneous of degree one in the carapts of the period 1 price vectar
This test is the counterpart to test T5 in pardyrbp37.

16.100In the next test, instead of multiplying all petid prices by the same number, all
period O prices are multiplied by the numBer

T5: Inverse proportionality in base period prices:

PUR°,p' VPV = AP pt VPV for A > 0
That is, if all period O prices are multiplied hetpositive numbet, then the new price
index is 1A times the old price index. Put another way, theepindex functiorP(p®,p" V%)
is (positively) homogeneous of degree minus ortencomponents of the period O price
vectorp’. This test is the counterpart to test T6 in paphrl6.39.

16.101The following two homogeneity tests can also lgarded as invariance tests.



T6: Invariance to proportional changes in current period values:

P°p' VAV = P(p°pt VPV forall A > 0
That is, if current period values are all multipliey the numbea, then the price index
remains unchanged. Put another way, the price ifdestionP(p°,p* V") is (positively)
homogeneous of degree zero in the components qftied 1 value vector-

T7: Invariance to proportional changesin base period values:

PE°p AV = P(p°pt VPV forall A > 0
That is, if base period values are all multipligckibe numbenl, then the price index remains
unchanged. Put another way, the price index fun®{p°,p*V’,}) is (positively)
homogeneous of degree zero in the components qietfied 0 value vectol.

16.102T6 and T7 together impose the property that timepndexP does not depend on the

absolute magnitudes of the value vectafsandv'. Using test T6 with/ :1/Zvi1 and using
i=1

test T7 withA =1/Zn:vi° , it can be seen th&has the following property:
i=1
P(p°, p',v°,v) = P(p°, p',s%s") (16.63)
wheres’ ands" are the vectors of expenditure shares for pefioaisd 1; i.e., thith
component of is s =V /Zn:vf( fort=0,1. Thus the tests T6 and T7 imply that theepri
k=1
index functionP is a function of the two price vectgrdandp® and the two vectors of

expenditure shares’ ands'.

16.103Walsh (1901, p. 104) suggested the spirit of t€6tand T7 as the following

guotation indicates: “What we are seeking is taage the variations in the exchange value
of one given total sum of money in relation to sieeeral classes of goods, to which several
variations [i.e., the price relatives] must be gissd weights proportional to the relative sizes

of the classes. Hence the relative sizes of thesekat both the periods must be considered.”

16.104Walsh also realized that weighting fitie price relative; by the arithmetic mean of
the value weights in the two periods under consittem, (1/2)i1° + vi'] would give too much

weight to the expenditures of the period that tedhighest level of prices:



At first sight it might be thought sufficient to @dip the weights of every class at the two perat$

to divide by two. This would give the (arithmetimean size of every class over the two periods
together. But such an operation is manifestly wrdnghe first place, the sizes of the classesahe
period are reckoned in the money of the period,ifitdhappens that the exchange value of money has
fallen, or prices in general have risen, greatfuémce upon the result would be given to the wegh

of the second period; or if prices in general hiaden, greater influence would be given to the
weighting of the first period. Or in a comparisagtween two countries, greater influence would be
given to the weighting of the country with the heghevel of prices. But it is plain th#te one period,

or the one country, isasimportant, in our comparison between them, as the other, and the weighting in

the averaging of their weights should really be even (Walsh (1901, pp. 104-105)).

16.105As a solution to the above weighting problem, W4901, p. 202; 1921a, p. 97)

proposed the followingeometric price index:

Paw (P%, p5, V0,V = ”(iij | (16.64)

where thdth weight in the above formula was defined as

1\1/2 0-1\1/2
w, =) —= (85) / i=1,.n. (16.65)
v 1\1/2 0a1y\1/2
2 (V) k2:1)(51<Sa<)

k=1

The second equation in (16.65) shows that Walstsrgetric price indeRow(p”,p' V2,V
can also be written as a function of the expendisimare vectors’ ands'; i.e.,
Pow(p”,p'\V°V1) is homogeneous of degree zero in the componénite calue vectors® and
vt and sPaw(p®,pt VP VY = Pew(p’pt.s.st). Walsh came very close to deriving the
Tornqvist=Theil index defined earlier by equatid6.¢48)%*

Invariance and symmetry tests

16.106The next five tests aravariance or symmetry tests and four of them are direct
counterparts to similar tests in paragraphs 1&46t46 above. The first invariance test is

that the price index should remain unchanged ibtidering of the commodities is changed.

® Walsh’s index could be derived using the samerarmts as Theil, except that the geometric aveshtiee
expenditure shares{s)*? could be taken as a preliminary probability weifghttheith logarithmic price
relative, Inr;. These preliminary weights are then normalizeddd up to unity by dividing by their sum. It is
evident that Walsh’s geometric price index willsgty approximate Theil's index using normal timeiegdata.
More formally, regarding both indices as functiafg®,p!,\0,v1, it can be shown that Pu(p%,p’,\0,v!) approximates
Pr{po,p',v0,v!) to the second order around an equal price (i.e., p° = p') and quantity (i.e., g° = q') point.



T8: Commodity reversal test (or invariance to changes in the ordering of

commodities):

P(p™, p™,v*,v¥) = P(p°,p" Vv
wherep™ denotes a permutation of the components of tlisove' andv'* denotes the same
permutation of the componentsydfor t = 0,1. The term “commodity reversal test” is dae t
Fisher (1922; p. 63) but Walter Lane suggested i@ mppropriate name for the test might be
the “commodity permutation test”.

16.107The next test asks that the index be invariachtinges in the units of measurement.
T9: Invariance to changes in the units of measurement (commensurability test):
P(awp1,....anpn’; aaprt,.. P’ Vio, . s Vit ) =
P(L,... o2 pits o Va0, Ve Vi ved) forall an > 0, ...,an > 0
That is, the price index does not change if thésurfi measurement for each commodity are
changed. Note that the expenditure on commadityring period, vi, does not change if the
unit by which commodity is measured changes.

16.108The last test has a very important implicatiort &ze=1/.°, ... , an =1/’ and
substitute these values for theinto the definition of the test. The following egion is
obtained:

P(p°, p' Vo,V =P(,,r,v°,v') =P (r,v°,v) (16.66)

where } is a vector of ones of dimensiarandr is a vector of the price relatives; i.e., tte
component of isr; = pi/p°. Thus, if the commensurability test T9 is satisfithen the price

index P(p°,p*,V°,vY), which is a function of @variables, can be written as a function nf 3

variablesP*(r, Vv’ V'), wherer is the vector of price relatives aRt(r, \° ') is defined as

P(Ln,r V).

16.109The next test asks that the formula be invarianhé period chosen as the base
period.

T10: Timereversal test: P(p°,p* V2V = 1P(p!,p° v V)
That is, if the data for periods 0 and 1 are iritarnged, then the resulting price index should
equal the reciprocal of the original price indexviusly, in the one commodity case when
the price index is simply the single price rathasttest will be satisfied (as are all the other
tests listed in this section).



16.110The next test is a variant of the circularity t@stroduced in paragraphs 15.76 to
15.97 of Chapter 1%

T11: Transitivity in prices for fixed value weights:

P(R°,p%V V) = P(p",p"V V)P(p',p°V V)
In this test, the expenditure weighting vectetsandv®, are held constant while making all
price comparisons. Given that these weights arm ¢mistant, however, the test asks that the
product of the index going from period 0 toP[p° p*,V V), times the index going from
period 1 to 2P(p*,p%V,v9), should equal the direct index that comparesptiees of period 2
with those of period ®(p°,p%V V). This test is a many-commodity counterpart taapprty

that obviously holds for a single price relative.

16.111The final test in this section captures the ided the value weights should enter the
index number formula in a symmetric manner.

T12: Value weights symmetry test:

P(p"p" Vv = P(p"pr v V)
That is, if the expenditure vectors for the twoipds are interchanged, then the price index
remains invariant. This property means that, itrealare used to weight the prices in the
index number formula, then the period 0 valMeand the period 1 value$ must enter the

formula in a symmetric or even-handed manner.

A mean value test

16.112The next test is mean value test.
T13: Mean value test for prices:
min, (pt/p? :i=1,...,n) < P(p°, p*,v°,v}) <max (p'/p’ i =1,...,n) (16.67)
That is, the price index lies between the minimuioeoratio and the maximum price ratio.
Since the price index is to be interpreted as @mame of the price ratiosp/p?, it seems

essential that the price indBxsatisfy this test.

% See equation (15.77) in Chapter 15.



Monotonicity tests

16.113The next two tests in this section amenotonicity tests; i.e., how should the price
indexP(p°,p',\°v') change as any component of the two price veglbasdp® increases.

T14: Monotonicity in current prices:

P(p”p" V) < P(p”pP V7V if pt < p?
That is, if some period 1 price increases and m@oeease, then the price index must
increase (holding the value vectors fixed), so B{p?,p',q°,q") is increasing in the
components op* for fixed p°, v° andv’.

T15: Monotonicity in base prices:

P(p"p' VW) > P(p% pr oV if p° < p
That is, if any period O price increases and n@®@eahse, then the price index must decrease,

1 0.1

so thatP(p°,p*,d°,q") is decreasing in the componentsbdfor fixed pt, v° andv'.

Weighting tests

16.114The above tests are not sufficient to determieefdhnctional form of the price index;
for example, it can be shown that both Walsh'’s getoimprice indexPew(p,p* V') defined
by equation (16.65) and the Toérnqvist=Theil indRgp’,p',\°,v') defined by equation (16.48)
satisfy all of the above axioms. Thus, at leastronee test will be required in order to
determine the functional form for the price ind&x°,p* v’ ,v1).

16.115The tests proposed thus far do not specify exaaly the expenditure share vectors
s” ands' are to be used in order to weight, say, the firse relativep;'/p:°. The next test
says that only the expenditure sha8sands;* pertaining to the first commodity are to be
used in order to weight the prices that corresgorabmmodity 1p;* andp.’.

T16.Own share price weighting:
P(p,L,....15p; ,1,...,2v° vi* )

- f(pf, p;,[vf zH zD
k=1 k=1

(16.68)

Note thatv; /Zvi equalss;, the expenditure share for commodity 1 in peticthe above
k=1

test says that if all the prices are set equald@rckpt the prices for commaodity 1 in the two

periods, but the expenditures in the two periodsaabitrarily given, then the index depends



only on the two prices for commodity 1 and the expenditure shares for commodity 1. The

axiom says that a function of 2 f 2ariables is actually only a function of four \airies®®

16.1160f course, if test T16 is combined with test T& tommodity reversal test, then it

can be seen th&has the following property:

P@,....Lp° ,1,...,1; L,...,p L., v o)
n 16.69
(pu B ’[ ka][ v kalD i=1,..n ( )

Equation (16.69) says that, if all the prices ateegjual to 1 except the prices for commodity

i in the two periods, but the expenditures in the psriods are arbitrarily given, then the
index depends only on the two prices for commoidégd the two expenditure shares for

commodityi.

16.117The final test that also involves the weightingpdtes is the following one:
T17:1rrelevance of price change with tiny value weights:

P(p’,1,....1:p5,1,..,1; Q4 vy ;05 ,vp) =1 (16.70)

The test T17 says that, if all the prices are gatikto 1 except the prices for commodity 1 in

the two periods, and the expenditures on commdd#tse zero in the two periods but the

expenditures on the other commodities are arblgrgiven, then the index is equal t™.

Thus, roughly speaking, if the value weights fomooodity 1 are tiny, then it does not matter

what the price of commaodity 1 is during the twoipés.

16.1180f course, if test T17 is combined with test T& tommodity reversal test, then it

can be seen th&has the following property: far=1,...n:

PQ...1p°,%..,1; L. B L., 0,0 0,0 F (16.71)

Equation (16.71) says that, if all the prices ateegjual to 1 except the prices for commodity
I in the two periods, and the expenditures on comityo@re O during the two periods but the
other expenditures in the two periods are arblyraiven, then the index is equal to 1.

® In the economics literature, axioms of this tgpe known as separability axioms.

67 strictly speaking, since all prices and valuesraquired to be positive, the left-hand side afaipn (16.70)
should be replaced by the limit as the commodiwgluesy,® andv,*, approach 0.



16.119This completes the listing of tests for the appho® bilateral index number theory
based on the weighted average of price relativeésrris out that the above tests are sufficient

to imply a specific functional form for the pricedex, as seen in the next section.

The Tornqvist—Theil price index and the second testpproach to bilateral indices

16.120In Appendix 16.1 to this chapter, it is shown thiathe number of commodities
exceeds two and the bilateral price index funcB@f,p'v°,v') satisfies the 17 axioms listed
above, ther® must be the Térnqvist—Theil price index(p®,p*V°,v}) defined by equation
(16.48)%® Thus the 17 properties or tests listed in parawd$.94 to 16.129 provide an
axiomatic characterization of the Tornqvist—Theite index, just as the 20 tests listed in
paragraphs 16.30 to 16.73 provided an axiomaticacterization of the Fisher ideal price

index.

16.1210bviously, there is a parallel axiomatic theorydaantity indices of the form
Q(”.q'V° VY that depend on the two quantity vectors for pisi® and 1g° andg®, as well

as on the corresponding two expenditure vect8randv'. Thus, ifQ(q°,g',\° V') satisfies the
guantity counterparts to tests T1 to T17, tRemust be equal to the Térngvist—Theil quantity
indexQr(q’,g"\°,v") defined, as follows:

INQ (a°,g",v°,v)=> = (s°+5") ln(g—ij (16.72)

1
i 2
where as usual, the peribéxpenditure share on commoditg', is defined as/' /Zv}( fori

k=1

=1,...nandt=0,1.

16.122Unfortunately, the implicit Térnqvist—Theil pricedex, P+(q®,q"\°,v}) that
corresponds to the Tornqvist—Theil quantity in€@xdefined by equation (16.72) using the
product test, is natqual to the direct Térnqvist=Theil price indexp’,p',\°,v'), defined by

% The Térnquist—Theil price index satisfies allté%ts, but the proof in Appendix 16.1 does notalsthese
tests to establish the result in the opposite toectests 5, 13, 15 and one of 10 or 12 wereregtired in
order to show that an index satisfying the remarests must be the Térnqvist—Theil price index. Fo
alternative characterizations of the Tornqvist—Théatce index, see Balk and Diewert (2001) andikigér
(2002).



equation (16.48). The product test equation thiwheleP,r in the present context is given by
the following equation:

Vi
=1

P (@0t VO V) =
Ex]awarn

The fact that the direct Térngvist—Theil price ird® is not in general equal to the implicit

(16.73)

Torngvist—Theil price indeRt ,defined by equation (16.73), is something ofsadvantage
compared to the axiomatic approach outlined ingragzhs 16.30 to 16.73, which led to the
Fisher ideal price and quantity indices being cder®d “best”. Using the Fisher approach
meant that it was not necessary to decide whelleeaitn was to find a “best” price index or
a “best” quantity index: the theory outlined in @graphs 16.30 to 16.73 determined both
indices simultaneously. In the Tornqvist—Theil aygwh outlined in this section, however, it

is necessary to choose between a “best” price index'best” quantity inde%’

16.1230ther tests are of course possible. A countetparest T16 in paragraph 16.49, the
Paasche and Laspeyres bounding test, is the folgpgeometric Paasche and Laspeyres
bounding test:

Po. (P, 5V, V) < P(P°, P, V7, V) < P (P°, P, V2, V) or (16.74)
Por (P, P17, V) < P(P°, V7, V1) < Py (P, V0, VY)
where the logarithms of the geometric Laspeyresgaanetric Paasche price indicBg,
andPgp, are defined as follows:
n 1
InP, (p° p,v°,vh)= 250"‘(%} (16.75)

i=1 1

n 1

i=1 1
As usual, the periotlexpenditure share on commoditg', is defined as/; /Zv; fori =
k=1
1,...nandt = 0,1. It can be shown that the Térnqvist-TheiteindexP(p°,p* V°,v})
defined by equation (16.48) satisfies this test the geometric Walsh price index

% Hillinger (2002) suggested taking the geometre&amof the direct and implicit Térnqvist-Theil pimdices
in order to resolve this conflict. Unfortunateliietresulting index is not “best” for either setagfoms that were
suggested in this section.



Pow(p”,p'\V°.V) defined by equation (16.65) does not. The gedmBaasche and Laspeyres
bounding test was not included as a primary testigisection because it was not known a
priori what form of averaging of the price relasv@. g., geometric or arithmetic or
harmonic) would turn out to be appropriate in teist framework. The test (16.74) is an
appropriate one if it has been decided that geaoreteraging of the price relatives is the
appropriate framework, since the geometric Paaanbd aspeyres indices correspond to
“extreme” forms of value weighting in the contexiggometric averaging and it is natural to
require that the “best” price index lies betweessthextreme indices.

16.124Walsh (1901, p. 408) pointed out a problem withdeometric price index defined by
equation (16.65), which also applies to the Térsgiiheil price indexPr(p%,p* V" VY,

defined by equation (16.48): these geometric typléces do not give the “right” answer
when the quantity vectors are constant (or propoat) over the two periods. In this case,
Walsh thought that the “right” answer must be tloavk index, which is the ratio of the costs
of purchasing the constant basket during the twmg@s. Put another way, the geometric
indicesPsw andPr do not satisfy the fixed basket test T4 in paralgrb®.35. What then was
the argument that led Walsh to define his geomairerage type indeRgw? It turns out that

he was led to this type of index by consideringtheotest, which will now be explained.

16.125Walsh (1901, pp. 228-231) derived his test by wargg the following very simple
framework. Let there be only two commodities in ith@ex and suppose that the expenditure
share on each commodity is equal in each of thepevimds under consideration. The price
index under these conditions is equaP{p.’,p";pi*,po Vi’ valivit vt =
P*(rq,r;1/2,1/2;1/2,1/2F m(ry,r2), wherem(ry,rp) is a symmetric mean of the two price
relatives r, = p,/p.° andr, = p,/p,"."° In this framework, Walsh then proposed the foliogyi
pricerelative reciprocal test:

m(r,r, ) =1 (16.77)

Thus, if the value weighting for the two commoditie equal over the two periods and the
second price relative is the reciprocal of the fisce relativer;, then Walsh (1901, p. 230)
argued that the overall price index under thesmunistances ought to equal one, since the

relative fall in one price is exactly counterbaladdy a rise in the other and both

0 Walsh considered only the cases whamnas the arithmetic, geometric and harmonic meé&mngandr,.



commodities have the same expenditures in eacbdetlie found that the geometric mean
satisfied this test perfectly but the arithmeticaméed to index values greater than one
(provided that; was not equal to one) and the harmonic mean ledlax values that were
less than one, a situation which was not at afsatory’* Thus he was led to some form of

geometric averaging of the price relatives in ohki® approaches to index number theory.

16.126A generalization of Walsh’s result is easy to obt&uppose that the mean function,
m(rq,r2), satisfies Walsh'’s reciprocal test (16.77) andadditionmis a homogeneous mean,
so that it satisfies the following property for all> 0,r, > 0 and > O:

M(Ar, Ar,) = Am(r,,r,) (16.78)
Letr,>0,r,>0. Then

m(r,, 1) = [r—j m(r,,r,)

= rlm(i ,ﬁj using (16.78) with=-1 (16.79)
I

1
r r
=rm=|1-2|=rf|-2
' ( rlj ' [rlj

where the function of one (positive) varial(® is defined as

f(z2)=m(1,2) (16.80)
Using equation (16.77):

1=m(r,r,")

= (%] m(r,, rl‘l) (16.81)

1

|

=rm,r?) using (16.78) withl =

=

Using equation (16.80), equation (16.81) can beaeged in the following form:
f(r?)=r" (16.82)
Lettingz=r, % so thaz"? =r, %, equation (16.82) becomes:

f(2) = 22 (16.83)

"L “This tendency of the arithmetic and harmonic sohs to run into the ground or to fly into the hir their
excessive demands is clear indication of theiitigl§Walsh (1901, p. 231)).



Now substitute equation (16.83) into equation (2pahd the functional form for the mean
functionm(ry,r,) is determined:
r r 1/2
m(r,,r,) =r,f (—2j = r{—zj =r?r}? (16.84)
r.l r.1
Thus, the geometric mean of the two price relatigsgbe only homogeneous mean that will

satisfy Walsh’s price relative reciprocal test.

16.127There is one additional test that should be martioFisher (1911, p. 401)
introduced this test in his first book that deailiwthe test approach to index number theory.
He called it theest of determinateness asto prices and described it as follows: “A price

index should not be rendered zero, infinity, orateminate by an individual price becoming
zero. Thus, if any commodity should in 1910 bew gh the market, becoming a ‘free good’,
that fact ought not to render the index number&it0 zero.” In the present context, this test
could be interpreted as the following one: if amgte pricep? or pi* tends to zero, then the
price indexP(p’,p',v° V') should not tend to zero or plus infinity. Howeweith this
interpretation of the test, which regards the v&lifes remaining constant as f&or pi*

tends to zero, none of the commonly used index murfdsmulae would satisfy this test.
Hence this test should be interpreted as a tesafigies to price indice®(p’,p',a°.q') of the
type studied in paragraphs 16.30 to 16.73, whid¢to Fisher intended the test to apply.
Thus, Fisher’s price determinateness test shouldtbsreted as follows: if any single price
pi® or pi* tends to zero, then the price indep’,p',q°.q") should not tend to zero or plus
infinity. With this interpretation of the test,aan be verified that Laspeyres, Paasche and
Fisher indices satisfy this test but the Torngvisieil price index does not. Thus, when using
the Tornqvist—Theil price index, care must be takebound the prices away from zero in

order to avoid a meaningless index number value.

16.128Walsh was aware that geometric average type iadioeh as the Toérngvist-Theil
price indexPt or Walsh’s geometric price ind®g\ defined by equation (16.64) become
somewhat unstabf®as individual price relatives become very largsroall:

2 That is, the index may approach zero or plusityfi



Hence in practice the geometric average is nobditedepart much from the truth. Still, we haveise
that when the classes [i.e., expenditures] are weegiual and the price variations are very gréat, t
average may deflect considerably (Walsh (190178))3

In the cases of moderate inequality in the sizeéb@tlasses and of excessive variation in onbeof t
prices, there seems to be a tendency on the p#re @feometric method to deviate by itself, becamin
untrustworthy, while the other two methods keepyailose together (Walsh (1901, p. 404)).

16.129Weighing all the arguments and tests presentedeglitocseems that there may be a
slight preference for the use of the Fisher idei@epndex as a suitable target index for a
statistical agency, but, of course, opinions méfgdon which set of axioms is the most

appropriate to use in practice.

The test properties of the Lowe and Young indices
16.130The Young and Lowe indices were defined in Chap$erin the present section, the

axiomatic properties of these indices with respecheir price arguments are developéd.

16.131Let o = [qa",... 7] andp® = [p.,... pn°] denote the quantity and price vectors
pertaining to some base year. The corresponahsgyear expenditure shares can be defined

in the usual way as

s:’zn'o'i i=1,.n (16.85)

> o

k=1
Lets’ = [s”,...5:°] denote the vector of base year expenditure sh@ihesYoung (1812) price
index between periods 0 ah defined as follows:

R (p°, pt,sb)sisb (%j (16.86)

The Lowe (1823, p. 316) price indé&between periods 0 ands defined as follows:

3 Baldwin (1990, p. 255) worked out a few of théoaxatic properties of the Lowe index.

" This index number formula is also precisely Bead &tine’s (1924, p. 31) Type A index number foranul
Walsh (1901, p. 539) initially mistakenly attribdteowe’s formula to G. Poulett Scrope (1833), whote
Principles of political economy in 1833 and suggested Lowe’s formula without askedging Lowe’s priority.
But in his discussion of Fisher’s (1921) paper, $gl1921b,
p. 543-544) corrects his mistake on assigning Levie'mula:
What index number should you then use? It shouldhise>. q py/ > g po. This is the method used by Lowe within
a year or two of one hundred years ago. In my [180#k, | called it Scope’s index number; but ibald be
called Lowe’s. Note that in it are used quantitiegher of a base year nor of a subsequent yearqUiantities
used should be rough estimates of what the quesititere throughout the period or epoch.



(16.87)

N n .
Yoplgh 2s (bj
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2opa Y j
k=1

16.132Drawing on the axioms listed above in this chapt@rdesirable axioms for price
indices of the fornP(p°,p) are listed below. The period 0 angrice vectorsp® andp', are
presumed to have strictly positive components.

T1: Positivity: P(p%,p') > 0 if all prices are positive

T2: Continuity: P(p%,p") is a continuous function of prices

T3: Identity test: P(p,p) = 1

T4: Homogeneity test for period t prices: P(p°,Ap') = AP(p°,p) for all A > 0

T5: Homogeneity test for period 0 prices: P(Ap°,p') = A*P(p°,p") for allA > 0

T6: Commodity reversal test: P(p°,p") = P(p”",p") wherep® andp” denote the same

permutatiof® of the components of the price vectptsndp'

T7: Invariance to changes in the units of measurement (commensurability test)

T8: Timereversal test: P(p',p%) = 1P(p°,p")

T9: Circularity or transitivity test: P(p°,p%) = P(p°,p")P(p*,p?)

T10: Mean valuetest: min{p/p’° :i = 1,...n} <PE°p") < max{p/p’:i=1,...n}

T11: Monotonicity test with respect to period t prices: P(p°,p') < P(p°,p") if p' < p"

T12: Monotonicity test with respect to period 0 prices: P(p%,p') > P(p% ,p") if p° <p”

16.133lt is straightforward to show that the Lowe indiefined by equation (16.87) satisfies

all 12 of the axioms or tests listed above. Heheeliowe index has very good axiomatic

properties with respect to its price variabl®s.

16.134lt is straightforward to show that the Young inadk{ined by equation (16.86)

satisfies 10 of the 12 axioms, failing the timea®sal test T8 and the circularity test T9. Thus

™ In applying this test to the Lowe and Young irgicit is assumed that the base year quantity vgtmnd
the base year share vectbare subject to the same permutation.

® From the discussion in Chapter 15, it will beaitad that the main problem with the Lowe indexwsdf the
quantity weight vectog® is not representative of the quantities that wenehased during the time interval
between periods 0 and 1.



the axiomatic properties of the Young index arerttedly inferior to those of the Lowe
index.
16.135 In place of the Young ind&x defined by (16.86), it possible to define the Getiio

Young index (or the weighted Jevons index) as edlo

n t S‘b
Pov(p’p's) = ] {%} . (16.88)

This index satisfies all 12 tests so it is as gasthe Lowe index with respect to its axiomatic

properties.

Appendix 16.1 Proof of the optimality of the Tornqust—Theil price index in the second
bilateral test approach
The tests (T1, T2, etc.) mentioned in this appeadixthose presented in paragraphs 16.98 to
16.119.
1. Definer; =pY/pfori = 1,...n. Using T1, T9 and equation (16.68)(p°,p*V°v}) =
P*(r,\°v"). Using T6, T7 and equation (16.63):
P(p°, p',v*,v') = P (r,s,s") (A16.1.1)
wheres' is the period expenditure share vector for 0,1.
2. Let x=(Xg,...,Xn) and y= (yu,...,Yn) be strictly positive vectors. The transitivityste
T11 and equation (A16.1.1) imply that the funct®nhas the following property:
PY(x;s”, 8P (y;s% s") =P (xY,,...x.Y, :s°s") (A16.1.2)
3. Using test T1P*(r,s’,s') > 0 and using test T18%(r, s°,s) is strictly increasing in
the components of The identity test T3 implies that
P°@,,s’s) =1 (A16.1.3)
where } is a vector of ones of dimensianUsing a result attributable to Eichhorn (1978, p.
66), it can be seen that these propertid®*are sufficient to imply that there exist positive

functionsai(0,sY) fori = 1,...n such thaP* has the following representation:
InP(r,s’,s")=> a,(s°,sY)Inr, (A16.1.4)
i=1

4. The continuity test T2 implies that the positivadtionsai(s’,s') are continuous. For

A > 0, the linear homogeneity test T4 implies that



InP(Ar,s°,s') =InAP(r,s°,s")
=InA+InP(r,s°,s").

Also,In P (Ar,s%,s") = a,(s’,s") InAr, using(A16.1.4) (A16.1.5)

i=1

=>a,(s°,s)Inr, +> a,(s’,s")In A
i=1 i=1

=InP(r,s",s")+ > a;(s°,s") In A
i=1

Therefore Ik + In P*(r,$,s") = In P¥(r,$,s) + Zn:ai (s°,s')InA

i=1

Consequently, I =Ind > a,(s°,s")

i=1

So Zn:ai (s?,s') =1. (A16.1.6)

i=1
5. Using the weighting test T16 and the commodity reaktest T8, equations (16.69)
hold. Equation (16.69) combined with the commensilita test T9 implies thaP*
satisfies the following equation:
P'@...r 1...1;8,s)=f (Lr,s,5); i=1,..n (A16.1.7)
for all ri > 0 wherd is the function defined in test T16.
6. Substitute equation (A16.1.7) into equation (A14)1n order to obtain the following
system of equations:
Inf@r,s’,s)=INP*@...1r, L...1;s°,s") = iai (s°,s")Inr, =a;(s’,s")Inr; (A16.1.8)
=1
(since ;=1 forj #i). Then, because the right-hand side of eqn. {16v®lves only theth
elements of the vectoss ands', the same must be true of the left-hand side,lie.
f(1,r,s°s".
But equation (A16.1.8) implies that the positivatiouous function of & variablesai(s’.s')
is constant with respect to all of its argumentsegts® ands® and this property holds for

eachi. Thus eachn;i(s,s") can be replaced by the positive continuous fanctif two



variablesg(s%s?) fori = 1,...n."" Now replace thex(s’,s") in equation (A16.1.4) by the

B(ss?) fori = 1,...n and the following representation fBt is obtained:
InPS(r,s°,sY) =) B (s’ s)Inr,. (A16.1.9)
i=1

7. Equation (A16.1.6) implies that the functiofiés®,s?) also satisfy the following

restrictions:
Y s =1; and) s =1impliesd B(s’,5) =1 (A16.1.10)
i=1 i=1 i=1

8. Assume that the weighting test T17 holds and suitetequation (16.71) into

equation (A16.1.9) in order to obtain the followieguation:

1
B (0,0)In(%J = 0: i=1,.n (A16.1.11)
Since thepi* andp® can be arbitrary positive numbers, it can be $eanequation (A16.1.11)
implies
B(0,0)=0; i= 1n (A16.1.12)

9. Assume that the number of commoditreis equal to or greater than 3. Using
equations (A16.1.10) and (A16.1.12), Theorem 2 ¢aé\ (1987, p. 8) can be applied

and the following functional form for each of tfigs’,s?) is obtained:
B(s,s)=ys+A-pYs; i=1,..n (A16.1.13)
whereyis a positive number satisfying Oy< 1.

10. Finally, the time reversal test THD the quantity weights symmetry test T12 can be
used to show thgtmust equal %2. Substituting this value jdyack into equation
(A16.1.13) and then substituting that equation batk equation (A16.1.9), the
functional form forP* and hencéP is determined as

n 1
InP(p°, p',v°,vY) =InP"(r,s°,s") = Z%(slo + sﬁl)ln(&o} (A16.1.14)
i=1 P,

" More explicitly, Bi(s.°.st") = a1(s°.1,...,151,1,...,1) and so on. That is, in definigiys.%,s.%), the function
a(s%1,...,151,...,1) is used where all components of the vecfbasids' except the first are set equal to an
arbitrary positive number such as 1.



