17 THE ECONOMIC APPROACH TO INDEX NUMBER
THEORY: THE SINGLE-HOUSEHOLD CASE

Introduction
17.1 This chapter and the next cover the economic ambrto index number theory. This
chapter considers the case d@lirglehousehold, while the following chapter deals vifta

case ofmanyhouseholds. A brief outline of the contents of pinesent chapter follows.

17.2 In paragraphs 17.9 to 17.17, the theory of theé @bléving index for a single
consumer or household is presented. This theoryowgmally developed by the Russian
economist, A.A. Konis (1924). The relationship bedwthe (unobservable) true cost of
living index and the observable Laspeyres and Paasclices will be explained. It should be
noted that, in the economic approach to index nurht@ory, it is assumed that households
regard the observed price data as given, whilgjtiaatity data are regarded as solutions to
various economic optimization problems. Many pstaisticians find the assumptions made
in the economic approach to be somewhat implaudi#ehaps the best way to regard the
assumptions made in the economic approach istieaétassumptions simply formalize the
fact that consumers tend to purchase more of a @zhtynf its price falls relative to other

prices.

17.3 In paragraphs 17.18 to 17.26, the preferencdseoédnsumer are restricted compared
to the completely general case treated in paragrapl® to 17.17. In paragraphs 17.18 to
17.26, it is assumed that the function that reprissine consumer’s preferences over
alternative combinations of commodities is homogeiseof degree one. This assumption
means that each indifference surface (the setrahwadity bundles that give the consumer
the same satisfaction or utility) is a radial blag-of a single indifference surface. With this

extra assumption, the theory of the true costviridj simplifies, as will be seen.

17.4 In the sections starting with paragraphs 17.2733@nd 17.44, it is shown that the
Fisher, Walsh and Tornqvist price indices (whicleege as being “best” in the various non-
economic approaches) are also among the “beslteiet¢onomic approach to index number
theory. In these sections, the preference funafdhe single household will be further

restricted compared to the assumptions on prefesemade in the previous two sections.



Specific functional forms for the consumer’s wjilitinction are assumed and it turns out that,
with each of these specific assumptions, the coessrtrue cost of living index can be
exactly calculated using observable price and qtyasita. Each of the three specific
functional forms for the consumer’s utility funatithas the property that it can approximate
an arbitrary linearly homogeneous function to teeosid order; i.e., in economics
terminology, each of these three functional foreftexible Hence, using the terminology
introduced by Diewert (1976), the Fisher, Walsh @dchqvist price indices are examples of

superlativeindex number formulae.

17.5 In paragraphs 17.50 to 17.54, it is shown thatikber, Walsh and Térngvist price
indices approximate each other very closely usimggrhal”’ time series data. This is a very
convenient result since these three index numbverdlae repeatedly show up as being
“best” in all the approaches to index number theblignce this approximation result implies
that it normally will not matter which of these ¢erindices is chosen as the preferred target

index for a consumer price index (CPI).

17.6 The Paasche and Laspeyres price indices havey @@evenient mathematical
property: they areonsistent in aggregatio-or example, if the Laspeyres formula is used to
construct sub-indices for, say, food or clothirggrt these sub-index values can be treated as
sub-aggregate price relatives and, using the extpeadhares on these sub-aggregates, the
Laspeyres formula can be applied again to formastage Laspeyres price index.
Consistency in aggregation means that this twoesitadex is equal to the corresponding
single-stage index. In paragraphs 17.55 to 17t@®shown that the superlative indices
derived in the earlier sections are not exactlyseiant in aggregation but are approximately

consistent in aggregation.

17.7 In paragraphs 17.61 to 17.64, a very interestidgx number formula is derived: the
Lloyd (1975) and Moulton (1996a) price index. Timdex number formula makes use of the
same information that is required in order to cltaua Laspeyres index (namely, base period
expenditure shares, base period prices and cyreeinid prices), plus one other parameter
(the elasticity of substitution between commodjti¢isinformation on this extra parameter

can be obtained, then the resulting index can haeganinate substitution bias and it can be

calculated using basically the same information ieequired to obtain the Laspeyres index.



17.8 The section starting with paragraph 17.65 consitiee problem of defining a true
cost of living index when the consumer has annugfiepences over commaodities but faces
monthly (or quarterly) prices. This section attesmat provide an economic foundation for
the Lowe index studied in Chapter 15. It also pdesgian introduction to the problems
associated with the existence of seasonal comresditihich are considered at more length
in Chapter 22. The final section deals with sitoiasi where there may be a zero price for a

commodity in one period, but where the price is-mero in the other period.

The Konus cost of living index and observable boursl

17.9 This section deals with the theory of the codtvifig index for a single consumer (or
household) that was first developed by the Russtamomist, Konis (1924). This theory
relies on the assumption optimizing behaviouon the part of economic agents (consumers).
Thus, given a vector of commodity prigeighat the household faces in a given time petjod
it is assumed that the corresponding observed fyaettord' is the solution to a cost
minimization problem that involves the consumersference or utility functiofi> Thus in
contrast to the axiomatic approach to index nuntteeory, the economic approach does not
assume that the two quantity vectqfandg' are independent of the two price vecigtsnd
p*. In the economic approach, the period 0 quangttarg’ is determined by the consumer’s
preference functiohand the period 0 vector of pricgSthat the consumer faces, and the
period 1 quantity vectay' is determined by the consumer’s preference fundtamd the

period 1 vector of prices'.

17.10 The economic approach to index number theory assubhat “the” consumer has
well-definedpreference®ver different combinations of threconsumer commodities or
items? Each combination of items can be representedimsiive quantity vectoq =

[qi,...,0n)- The consumer’s preferences over alternativeiplessonsumption vectors, are

! For a description of the economic theory of tifgui and output price indices, see Balk (1998ajhén
economic theory of the output price indgkis assumed to be the solution to a revenue maatioiz problem
involving the output price vectq'.

2 |n this chapter, these preferences are assunteslitvariant over time, while in the following gtar, this
assumption is relaxed (one of the environmentadbb#es could be a time variable that shifts tastes)



assumed to be representable by a continuous, rereaténg and concavatility functionf.
Thus iff(g") > f(q®), then the consumer prefers the consumption vettirg’. It is further
assumed that the consumer minimizes the cost iénl the period utility level u' = f(q)
for periodst = 0,1. Thus we assume that the observed pédodsumption vectoy' solves

the following period costminimizationproblem:
., d)=min, |3 dq: 1(9= 6= ()
) = (17.1)
=> piq for t=0,1
i=1

The period price vector for then commodities under consideration that the consuamsst
is p. Note that the solution to the cost or expenditaieimization problem (17.1) for a

general utility leveu and general vector of commodity prigedefines theconsumer’s cost
function C(u, p). The cost function will be used below in orded#dine the consumertost

of living price index

17.11 The Konis (1924) family dfue cost of living indicepertaining to two periods where
the consumer faces the strictly positive price mesg’ = (p°,...,p.°0) andp® = (pt,....pnY) in
periods 0 and 1, respectively, is defined as ttie o the minimum costs of achieving the
same utility level = f(q) whereq = (as,...,0n) IS @ positive reference quantity vector:
(9. p) plo) (17.2)

C(f(a. P)

Note that definition (17.2) defines a family ofg&iindices, because there is one such index

PP, P, Q=

for each reference quantity vectpchosen.

17.12 Itis natural to choose two specific referenceniizavectorsq in definition (17.2):
the observed base period quantity vegtoand the current period quantity vectpr The first
of these two choices leads to the followlraspeyres—Konus true cost of living index

® Note thaf is concave if and only f{Aq" + (1-1)?) = Af(q") + (1-A)f(qP) for all 0< A< 1 and allg* >> 0, and
o° >> 0,. Note also thatj > Oy means that each component of fhdimensional vectoq is non-negativeg >>
0, means that each componenta$ positive andj > Q, means thaf] = 0, but g# 0,; i.e.,q is non-negative but
at least one component is positive.
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whereP,_ is the Laspeyres price indekaus the (unobservable) Laspeyres—Konus true ¢ost o

living index is bounded from above by the obseredtdspeyres price indéx.

17.13 The second of the two natural choices for a refeuantity vectaq in definition
(17.2) leads to the followinBaasche—Kontis true cost of living index

* This inequality was first obtained by Koniis (192839, p. 17). See also Pollak (1983).
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C(f(q"),p°) < Zn: p°q" andhence
i=1

=P.(p" p",q°,q)
wherePe is the Paasche price index. Thus the (unobservBbiesche—Konus true cost of

living index is bounded from below by the obsereaBhasche price indéx.

17.14 Itis possible to illustrate the two inequaliti@§.3) and (17.4) if there are only two
commodities; see Figure 17.1. The solution to #rgod O cost minimization problem is the
vectorg’. The straight line C represents the consumeri®pér budget constraint, the set of
quantity pointsy, o, such thap:’op + pa = pia’ + p2’g". The curved line througly is

the consumer’s period 0 indifference curve, theo§@bintsq, o, such thaf(as, o) = f(q.°,
a”); i.e., it is the set of consumption vectors iige the same utility as the observed period
0 consumption vector’qThe solution to the period 1 cost minimizatioolgem is the vector
q-. The straight line D represents the consumer'®@er budget constraint, the set of
quantity pointsy, o, such thap:'op + po'ap = piaat + po'ap*. The curved line through' is

the consumer’s period 1 indifference curve, theo§@bintsq, . such thaf(qy, q) =

f(o.',02"); i.e., it is the set of consumption vectors tige the same utility as the observed
period 1 consumption vectgf. The pointg®” solves the hypothetical problem of minimizing
the cost of achieving the base period utility lavet f(g°) when facing the period 1 price

vectorp® = (p.h,p2Y). Thus we have€[,p’] = pila” + p'qx’ and the dashed line A is the

® This inequality is attributable to Koniis (192839, p. 19); see also Pollak (1983).



corresponding isocost liqg'ag; + p.'a, = C[u°,p']. Note that the hypothetical cost line A is
parallel to the actual period 1 cost line D. Fraqnation (17.3), the Laspeyres—Konus true
index isC[u’,p"] / [pLa:’ + p°aY], while the ordinary Laspeyres index j&%:° + p.'a.] /
[par’ + plg.”]. Since the denominators for these two indiceslaeesame, the difference
between the indices is attributable to the diffeemnin their numerators. In Figure 17.1, this
difference in the numerators is expressed by tbtiat the cost line through A lies below
the parallel cost line through B. Now if the conguiw indifference curve through the
observed period 0 consumption veaidmere L-shaped with vertex gt, then the consumer
would not change his or her consumption pattemesponse to a change in the relative prices
of the two commodities while keeping a fixed stamdaf living. In this case, the hypothetical
vectorg” would coincide withy?, the dashed line through A would coincide with dashed
line through B and the true Laspeyres—Konus indexlavcoincide with the ordinary
Laspeyres index. However, L-shaped indifferenceesiare not generally consistent with
consumer behaviour; i.e., when the price of a coditpaecreases, consumers generally
demand more of it. Thus, in the general case, thdrde a gap between the points A and B.
The magnitude of this gap represents the amousuiladtitution biapetween the true index
and the corresponding Laspeyres index; i.e., tlepéyaes index will generally be greater

than the corresponding true cost of living index(p°, p*, d°).

Figure 17.1 The Laspeyres and Paasche bounds tatheost of living

0=

G4

17.15 Figure 17.1 can also be used to illustrate thguabty (17.4). First note that the
dashed lines through E aficare parallel to the period 0 isocost line througi e pointg®’
solves the hypothetical problem of minimizing tlstcof achieving the current period utility
level u = f(q') when facing the period 0 price vectSr= (p.°,p;°). Thus we have€[u*,p’] =

plat” +p gt . From equation (17.4), the Paasche—Koniis truexiisdie:’g.” + po'a,'] /



C[u*,p"], while the ordinary Paasche index is'fl.* + po'ap'] / [plon* + p ). Since the
numerators for these two indices are the samalitfezence between the indices is
attributable to the differences in their denomingitén Figure 17.1, this difference in the
denominators is expressed by the fact that thelioesthrough E lies below the parallel cost
line through F. The magnitude of this differencpresents the amount of substitutimias
between the true index and the corresponding Paasdix; i.e., the Paasche index will
generally be lesthan the corresponding true cost of living index(p°, p*, q*). Note that this
inequality goes in the opposite direction to thevpous inequality between the two Laspeyres
indices. The reason for this change in directioatisbutable to the fact that one set of
differences between the two indices takes plateamumerators of the indices (the
Laspeyres inequalities), while the other set tgdtase in the denominators of the indices (the

Paasche inequalities).

17.16 The bound (17.3) on the Laspeyres—Koniis trueafditing indexPx(p°, p*, o°)

using the base period level of utility as the lyystandard isne-sidedas is the bound (17.4)
on the Paasche—Koniis true cost of living inBle¢p’, p*, q*) using thecurrent periodlevel of
utility as the living standard. In a remarkableutesKonus (1924; 1939, p. 20) showed that
there exists an intermediate consumption vegtdhat is on the straight line joining the base
period consumption vectof and the current period consumption vecfosuch that the
corresponding (unobservable) true cost of livindeiPx(p°, p, g*) is between the

observable Laspeyres and Paasche inditeandPp.® Thus we have the existence of a
numberA* between 0 and 1 such that

P, < PK(pO, pLAQ+@1-A)gh) < P .(17.5)

The inequalities (17.5) are of some practical inguace. If the observable (in principle)
Paasche and Laspeyres indices are not too far, #pamttaking a symmetric average of these
indices should provide a good approximation taia tost of living index where the
reference standard of living is somewhere betwkerbtise and current period living
standards. To determine the precise symmetric geevhthe Paasche and Laspeyres indices,
appeal can be made to the results in paragraph8 i®b15.32 in Chapter 15, and the

geometric mean of the Paasche and Laspeyres inchodse justified as being the “best”

® For more recent applications of the Koniis metbfogroof, see Diewert (1983a, p. 191) for an agian to
the consumer context and Diewert (1983b, pp. 182t for an application to the producer context.



average, which is the Fisher price index. ThugHisber ideal price index receives a fairly
strong justification as a good approximation tauanbservable theoretical cost of living

index.

17.17 The bounds (17.3)—(17.5) are the best that caobtaned on true cost of living
indices without making further assumptions. Furéeesumptions are made below on the
class of utility functions that describe the consumitastes for the commodities under
consideration. With these extra assumptions, thewmer’s true cost of living can be

determined exactly.

The true cost of living index when preferences areomothetic

17.18 Up to now, the consumer’s preference funcfidid not have to satisfy any particular
homogeneity assumption. For the remainder of #isien, it is assumed thhis (positively
linearly homogeneoufsin the economics literature, this is known asaksumption of
homothetic preferencésThis assumption is not strictly justified from thiewpoint of actual
economic behaviour, because it leads to econorge prdices that are independent of the
consumer’s standard of livifgunder this assumption, the consumer’s expendaum®st
function,C(u, p) defined by equation (17.1), decomposes as folléws positive commodity
pricesp >> Qy and a positive utility leval, then, using the definition & as the minimum
cost of achieving the given utility leva] the following equalities can be derived:

" The linear homogeneity property means frsatisfies the following propert§tAq) = Af(q) for all A > 0 and
all g >> @, This assumption is fairly restrictive in the canger context. It implies that each indifferenceveur
is a radial projection of the unit utility indiffence curve. It also implies that all income elatiis of demand
are unity, which is contradicted by empirical evide.

8 More precisely, Shephard (1953) defined a hontiatifienction to be a monotonic transformation dinearly
homogeneous function. However, if a consumer’styfilinction is homothetic, it can always be resdato be
linearly homogeneous without changing consumer \ieha Hence, the homothetic preferences assumption
can simply be identified with the linear homogeyp@issumption.

® This particular branch of the economic approacimdex number theory is attributable to Shepha@b8;
1970) and Samuelson and Swamy (1974). Shephamtticydar realized the importance of the homottigtic
assumption in conjunction with separability assuaoms in justifying the existence of subindiceslué bverall
cost of living index. It should be noted that,itftconsumer’s change in real income or utility lestwthe two
periods under consideration is not too large, #esuming that the consumer has homothetic prefesemit
lead to a true cost of living index which is vetgse to Laspeyres—Koniis and Paasche—Koniis truefcost
living indices defined by equations (17.3) and 4).7Another way of justifying the homothetic prefaces
assumption is to use equation (17.49), which jestithe use of the superlative Térnqvist—Theil inBein the
context of non-homothetic preferences. SiRgés usually numerically close to other superlativdices that are
derived using the homothetic preferences assumptioan be seen that the assumption of homotinetigll
usually not be empirically misleading in the indexnber context.



C(u,p)= min, Z pa : f(a,-..0,) 2 U}

i=1

= minq{z ng Ly (%,-.-,0,) 21} dividingbyu >0
; u

Z ng : f(i,...,&) 21} usingthelinearhomogeneytof f
u u

i (17.6)
= uminq{zi: f(&,...,%) 21}

i u u
:uminz{zn: Rz : f(zl,...,zn)zl} letting z, =4
i=1 u

=uC@ p) usingdefinition(17.1)
=uc(p)

wherec(p) = C(1,p) is theunit cost functiorthat corresponds o' It can be shown that the
unit cost functiorc(p) satisfies the same regularity conditions frestisfies; i.e.¢(p) is
positive, concave and (positively) linearly homogeus for positive price vectots.
Substituting equation (17.6) into equation (17 Ad asingu' = f(q) leads to the following

equation:
Y.pig =c(p)f(q") fort=0,1 (17.7)
i=1

Thus, under the linear homogeneity assumption emtitity functionf, observed periotl
expenditure on the commodities is equal to the peribdnit costc(p') of achieving one unit
of utility times the period utility level, f(gf). Obviously, the periotlunit cost,c(p"), can be
considered to be the periogrice levelP' and the periodlevel of utility, f(q"), as the period

quantity levelQ'.*?

19 Economists will recognize the producer theoryrterpart to the resut(u,p) = uc(p): if a producer’s
production functiorf is subject to constant returns to scale, then dineesponding total cost functid(u,p) is
equal to the product of the output leudimes the unit cost(p).

1 Obviously, the utility functiori determines the consumer’s cost funct@®{p,p) as the solution to the cost
minimization problem in the first line of equati¢t7.6). Then the unit cost functiafp) is defined a£(1,p).
Thusf determineg. But we can also useto determind under appropriate regularity conditions. In the
economics literature, this is knowndasality theory.For additional material on duality theory and gineperties
of fandc, see Samuelson (1953), Shephard (1953) and Di¢i&ftta; 1993b, pp. 107-123).

12 There is also a producer theory interpretatiothefabove theory; i.e., lébe the producer’s (constant returns
to scale) production function, Iptbe a vector of input prices that the producerdatq be an input vector

(continued)



17.19 The linear homogeneity assumption on the consunpeeference functiohleads to a
simplification for the family of Koniis true cost bfing indices,Px(p°, p, q), defined by
equation (17.2). Using this definition for an arary reference quantity vectqr
C(f(a), p)
C(f(a), p%)
_c(p)f(a)
c(p°) f(a)
_c(p)
c(p°)

Thus under the homothetic preferences assumptiereritire family of Konis true cost of

P (p°, pt Q)=

using(17.6)twice (17.8)

living indices collapses to a single indeg")/c(p°), the ratio of the minimum costs of
achieving unit utility level when the consumer fageriod 1 and O prices respectively. Put
another way, under the homothetic preferences gstamPy(p°, p, q) is independent of the

reference quantity vector

17.20 If the Konds true cost of living index defined the right-hand side of equation (17.8)
is used as the price index concept, then the quoreing implicit quantity index defined
using the product test (i.e., the product of thegpndex times the quantity index is equal to

the value ratio) has the following form:

> 1.1
0 A1 A0 A1\ = ;HQ.
Q(p™,p.0,q)=—
> p°a’P(p°, p',a)
i=1

_ c(ph) f(q") . .
= ()1 (qO)PK(pO, o' Q) using(17.7)twice (17.9)
_ c(p’) f(q") ina(17.8
(@ etp) i) 9O
_ (@)
f(q°)

n
and letu = f(g) be the maximum output that can be produced usiggnput vector. C(u,p) = min { Z RGq :
i=1
f(q) = u} is the producer’s cost function in this case af) can be identified as the peribohput price level,
while f(q) is the period aggregate input level.



Thus, under the homothetic preferences assumplienmplicitquantityindex that
corresponds to the true cost of living price ind@)/c(p®) is the utilityratio f(q*)/f(q°).
Since the utility function is assumed to be homegers of degree one, this is the natural
definition for a quantity index.

17.21 In subsequent material, two additional resulteffleconomic theory will be needed:
Wold'’s Identity and Shephard’s Lemma. Wol@944, pp. 69-71; 1953, p. 145) Identity is
the following result. Assuming that the consumeis§ias the cost minimization assumptions
(17.1) for periods 0 and 1 and that the utilitydtion f is differentiable at the observed

quantity vectors’ andq’, it can be showH that the following equation holds:

of (q')
t
_ P — - 62}( 5 for t=0,1andi =1,...n (17.10)
> oA Yd S
k=1 k=1 O

wheredf(q')/dq; denotes the partial derivative of the utility ftina f with respect to thith

quantityq, evaluated at the periddjuantity vecto.

17.22 If the homothetic preferences assumption is madetas assumed that the utility
function is linearly homogeneous, then Wolltisntity can be simplified into an equation

that will prove to be very useftif:

t

t
P - 91(q )t/aqi fort =0,1andi =1,...,n (17.11)
ot f(a)
D P

n
k=1

13 To prove this, consider the first-order necessanditions for the strictly positive vectgito solve the
periodt cost minimization problem. The conditions of Lagyarwith respect to the vector giariables arep'

= A" 0f(q'), whereA' is the optimal Lagrange multiplier afti(q) is the vector of first-order partial derivatives
of f evaluated aff’. Note that this system of equations is the pripgaés a constant times marginal utility,
equations that are familiar to economists. Now talkeeinner product of both sides of this equatiati wespect
to the period quantity vectoy' and solve the resulting equation fr Substitute this solution back into the
vector equatiop' = A' 0f(q) and equation (17.10) is obtained.

14 Differentiate both sides of the equatigaq) = Af(q) with respect tol, and then evaluate the resulting

n
equation atl =1. The equationZ: f, (), =f(qg) is obtained wher(q) = af(q)/oq;

i=1



17.23 Shephard’s (195%.11) Lemma is the following result. Consider theipet cost
minimization problem defined by equation (17.1)thié cost functiorC(u, p) is differentiable
with respect to the components of the price vegttihen the periodquantity vectox is
equal to the vector of first-order partial derivas of the cost function with respect to the
components op:

t t
q =w fori=1,..,nandt=0,1 (17.12)
P;

17.24 To explain why equation (17.12) holds, considerftiilowing argument. Because it
is assumed that the observed petiqdantity vectoiy' solves the cost minimization problem
defined byC(U', p'), theng' must be feasible for this problem so it must leedase tha(q') =
u'. Thus,q' is a feasible solution for the following cost-nmimization problem where the
general price vectqr has replaced the specific peribgrice vectop":

C(u',p)= minq{z ng : f(q.,....q,) = ut} <> pg (17.13)

i=1 i=1

where the inequality follows from the fact tihE (g4, ...,0,) is a feasible (but usually not
optimal) solution for the cost minimization problémequation (17.13). Now define for each
strictly positive price vectgp the functiong(p) as follows:

g(p) =) pag —C(u', p) (17.14)

i=1

where, as usuah = (p,...,pn). Using equations (17.13) and (17.1), it can mndbaty(p) is
minimized (over all strictly positive price vectgusatp = p'. Thus the first-order necessary
conditions for minimizing a differentiable functiaf n variables hold, which simplify to
equation (17.12).

17.25 If the homothetic preferences assumption is madetds assumed that the utility
function is linearly homogeneous, then using equafi7.6), Shephard’s Lemma (17.12)

becomes:

g =ut 2P
I op,

Combining equations (17.15) and (17.7), the folloygvequation is obtained:

fori=1,..nandt=0,1 (17.15)



q _ac(p)

Sl P

c(p) fori =1,..n andt = O, (17.16)

17.26 Note the symmetry of equation (17.16) with equafib/.11). It is these two
equations that will be used in subsequent materiglis chapter.

Superlative indices: The Fisher ideal index

17.27 Suppose the consumer has the following homogergpaadratic utility function:

f(q,....q,) = / Za1.kqiqk,whereaik =a, for ali andk (17.17)
i=1 k=1

Differentiatingf(q) defined by equation (17.17) with respectjtgields the following

equation:
1 Zzaiqu
fi(q)ZE n":l for i=1,..n
a.a.
;kﬂ 1 (17.18)
zaiqu
— k=l
f(a)

wherefi(q) = 4(g)/0q;. In order to obtain the first equation in (17.1i8)s necessary to use
the symmetry conditionsy, = ax. Now evaluate the second equation in (17.18)at th
observed periotiquantity vectoq' = (a1',...,0.) and divide both sides of the resulting
equation byf(q). The following equations are obtained:
t
fi@) _ ;&qu for t=0,1andi=1,..n (17.19)
fa) {r@)f

Assume cost-minimizing behaviour for the consumeaperiods 0 and 1. Since the utility

functionf defined by equation (17.17) is linearly homogenesmu differentiable, equation
(17.11) will hold. Now recall the definition of théisher ideal quantity indeQr, defined

earlier in Chapter 15:



Q- (p°, pHa°%gh) = |4

usingequation17.11)fort =0

(1720)

2 f.(q° f( 0 \/Z (q)f( )usingequatior(l?.ll)fort=1

-\
JZZa Ok i / \/ZZa {(;)} usingequation(17.19)

i=1 k=1 f(q )} i=1 k=1

\/ /\/ 11 > usingequation(Z.17)andcancelingterms
G AT)

_ f(a)
- 1(Q°)
Thus under the assumption that the consumer engragest minimizing behaviour during

periods 0 and 1 and has preferences oven ttenmodities that correspond to the utility
function defined by equation (17.17), the Fishealdquantity indexX): is exactly equal to
the true quantity indext(q™)/f(q°).*°

17.28 As was noted in paragraphs 15.18 to 15.23 of @hdf&, the price index that
corresponds to the Fisher quantity ind@xusing the product test (15.3) is the Fisher price
index P, defined by equation (15.12). L&fp) be the unit cost function that corresponds to
the homogeneous quadratic utility functiostefined by equation (17.17). Then using
equations (17.16) and (17.20), it can be seen that

5 For the early history of this result, see Diew@a76, p. 184).



P-(p°,p".q%a") =% (17.21)

Thus, under the assumption that the consumer eagagest minimizing behaviour during
periods 0 and 1 and has preferences oven ttenmodities that correspond to the utility
function defined by equation (17.17), the Fisheaidprice indeXk is exactly equal to the
true price indexg(p)/c(p?).

17.29 A twice continuously differentiable functid(g) of nvariablesg = (qa,...,0,) can
provide asecond-order approximatiaim another such functidt(qg) around the poing?*, if
the level and all the first-order and second-opetial derivatives of the two functions
coincide ag*. It can be showtf that the homogeneous quadratic funcfidefined by
equation (17.17) can provide a second-order appratkon to an arbitrarff around any
(strictly positive) poing* in the class of linearly homogeneous functionsud the
homogeneous quadratic functional form defined hyatiqn (17.17) is #lexible functional
form.” Diewert (1976, p. 117) termed an index number fdar@{p°, p*, ¢°, ¢*) that was
exactly equal to the true quantity indief')/f(q°) (wheref is a flexible functional formy
superlative index number formutAEquation (17.20) and the fact that the homogeneous
guadratic functiori defined by equation (17.17) is a flexible functibfeem show that the
Fisher ideal quantity inde®r defined by equation (15.14) is a superlative indember
formula. Since the Fisher ideal price ind&xsatisfies equation (17.21), whex@) is the unit
cost function that is generated by the homogengqaoadratic utility functionPr is also

called a superlative index number formula.

17.30 Itis possible to show that the Fisher ideal pickex is a superlative index number
formula by a different route. Instead of startinghmthe assumption that the consumer’s

utility function is the homogeneous quadratic fumrctdefined by equation (17.17), it is

16 See Diewert (1976, p. 130) and let the paranmetqual 2.
" Diewert (1974a, p. 133) introduced this term itite economics literature.

18 Fisher (1922, p. 247) used the term superlati@escribe the Fisher ideal price index. Thus, Rig¢w
adopted Fisher’s terminology but attempted to givme precision to Fisher’s definition of superlatiess.
Fisher defined an index number formula to be sagied if it approximated the corresponding Fislueall
results using his data set.



possible to start with the assumption that the @ors’s unit cost function is a homogeneous

quadratic'® Thus, suppose that the consumer has the followritgcost function:

> b, p;p, whereb, =b, for ali andk (17.22)

n
i=1 k=1

C(Pys-- Py) =

Differentiatingc(p) defined by equation (17.22) with respecpigields the following

eqguations:
1 ZZQk Py«
(P =275 L fori=1,..n
b, p.
\/;g{ ik P By (17.23)

wherec(p) = dc(p")/dp:. In order to obtain the first equation in (17.28)s necessary to use
the symmetry conditions. Now evaluate the secomhigon in (17.23) at the observed period
t price vectop' = (p.',...,pn) and divide both sides of the resulting equatipre(p'). The
following equation is obtained:

c(p') - gblk Pi
() {e(p")f

As cost-minimizing behaviour for the consumer imipas 0 and 1 is being assumed, and,

for t =0,1and i =1,...,n (17.24)

since the unit cost functiondefined by equation (17.22) is differentiable, &gpns (17.16)
will hold. Now recall the definition of the Fishigteal price indexPg, given by equation
(15.12) in Chapter 15:

19 Given the consumer’s unit cost functicp), Diewert (1974a, p. 112) showed that the corradpg utility

n
functionf(g) can be defined as follows: for a strictly postiquantity vectoq, f(q) = 1/ max, { z Rq :c(p =
i=1
1}



N DL L)
P(p°, P a0 = | L

Z PLCe Z PYCc

n

ZIolc(p) 2, R
o(p°)

usingequation(17.16)fort =0

n

2. P
k=1

(17.25)

k=1

> o
i=1

1C(p)
zp o(p%)

\/Zl p Z((FE))) \/Z p° I((Igl)) usingequatior(17.16)fort =1

:\/{ : 10)}2 /\/{ (11)}2 usingequation(17.22)andcancellingterms
cp c(p

_ o)
o(p’)

Thus, under the assumption that the consumer eagagest-minimizing behaviour during

periods 0 and 1 and has preferences oven tttenmodities that correspond to the unit cost
function defined by equation (17.22), the Fisheldrice indeXPr is exactlyequal to the
true price indexg(p)/c(p°).?°

17.31 Since the homogeneous quadratic unit cost funcfjondefined by equation (17.22)
is also a flexible functional form, the fact thaetFisher ideal price indd¥- exactly equals

the true price indeg(p')/c(p®) means thalr is a superlative index number forméfa.

17.32 Suppose that thay coefficients in equation (17.22) satisfy the fallog restrictions:

%0 This result was obtained by Diewert (1976, pj8-134).

%1 Note that it has been shown that the Fisher imieix exact for the preferences defined by equatl@ni(7),
as well as the preferences that are dual to thecasi function defined by equation (17.22). Thivge classes
of preferences do not coincide in general. Howeif¢ine n by n symmetric matrixA of theay has an inverse,
then it can be shown that théy n matrix B of theby, will equalA™.



b, =bb, forik=1,.n (17.26)

where then numberdy; are non-negative. In this special case of equdfi@r22), it can be
seen that the unit cost function simplifies asdiet:
22 bhp
i=1 k=1
YhRYRR=2bp
i=1 k=1 i=1
Substituting equation (17.27) into Shephard’s LenfhYal5) yields the following

expressions for the periadjuantity vectorsg:

g 66(p)_

i op

=

(17.27)

O

bu' i=1..,nt=01 (17.28)

Thus if the consumer has the preferences thatsmorel to the unit cost function defined by
equation (17.22) where tlog satisfy the restrictions (17.26), then the pefiahd 1 quantity
vectors are equal to a multiple of the vedter (by, ... by); i.e.,o® =bu’ andg* =b u'. Under
these assumptions, the Fisher, Paasche and LaspegiasPr, Pr andP, all coincide

The preferences which correspond to the unit cogttion defined by equation (17.27) are,
however, not consistent with normal consumer behasince they imply that the consumer
will not substitute away from more expensive comitiesl to cheaper commodities if relative

prices change going from period 0 to 1.

Quadratic mean of orderr superlative indices

17.33 It turns out that there are many other superlatidex number formulae; i.e., there
exist many quantity indice®(p°, p*, o°, q) that are exactly equal f(q')/f(°) and many
price indiceP(p°, pt, o, q') that are exactly equal tgp*)/c(p®), where the aggregator
functionf or the unit cost function is a flexible functional form. Two families of seiative

indices are defined below.

17.34 Suppose the consumer has the following quadrag@mof order utility function??

fr(a,-00) —\/ZZakqf’z 2 (17.29)

k=1

22 The terminology is attributable to Diewert (19P6129).



where the parameteag satisfy the symmetry conditioag = a; for all i andk and the
parameter satisfies the restriction# 0. Diewert (1976, p. 130) showed that the utility
functionf’ defined by equation (17.29) is a flexible functibform; i.e., it can approximate
an arbitrary twice continuously differentiable laxyy homogeneous function to the second
order. Note that when= 2,f" equals the homogeneous quadratic function defiyed
equation (17.17).

17.35 Define the quadratic mean of ordeguantity indexQ" by:

r\/ Z s (g /%) "

i:l (17.30)

\/Zsl(qi(’ o)™

i=1

Q'(p°. pha’.a) =

wheres' = pg/ >’ pia, is the period expenditure share for commoditgs usual.
k=1

17.36 Using exactly the same techniques as were usearagraphs 17.27 to 17.32, it can
be shown tha®)' is exact for the aggregator functibrefined by equation (17.29); i.e., the
following exact relationship between the quantitgteéxQ" and the utility functiorf’ holds:
Q" (p’, p"a°.q") =erq? (17.31)

f'(a’)
Thus under the assumption that the consumer engragest-minimizing behaviour during
periods 0 and 1 and has preferences oven ttenmodities that correspond to the utility
function defined by equation (17.29), the quadratean of order quantity indexQr is
exactly equal to the true quantity ind€xg')/f' (o°).>* SinceQ" is exact forf” andf' is a
flexible functional form, it can be seen that thedratic mean of orderquantity indexQ" is
a superlative index for eact¥ 0. Thus there is an infinite number of superlaguantity

indices.

17.37 For each quantity inde®', the product test (15.3) in Chapter 15 can be irsedder

to define the corresponding implicit quadratic meforderr price indexP™:

% gee Diewert (1976, p. 130).



. 1,1
2R e (pY

P"(p% p',q%.q") =— (17.32)

] - Cr* 0
> °e°Q (p, phaa) ¢ (P
i=1

wherec™ is the unit cost function that corresponds todlgregator functiofi defined by
equation (17.29). For each#0, the implicit quadratic mean of ordeprice indexP™ is also

a superlative index.

17.38 Whenr = 2,Q" defined by equation (17.30) simplifies@g, the Fisher ideal quantity
index, andP™ defined by equation (17.32) simplifies Bg, the Fisher ideal price index.
Whenr = 1, Q" defined by equation (17.30) simplifies to:

Y % Zn‘,piqlgﬂ"q‘) L1

QP P of )= qio SaE n qo
28 31 2y g gl

P X RVed

— _i=1 i=1

> B Z RVad

i 1 prq lel o o
Y/ Y pJdd

i=1 i=1

2 &, d
zln:l—/Pw(po’ a0, q)
Z ploqo (17.33)

wherePyy is the Walsh price index defined previously byatgqn (15.19) in Chapter 15.

ThusP is equal toPy, the Walsh price index, and hence it is also @safive price index.

17.39 Suppose the consumer has the following quadragamnof order unit cost

function?*

24 This terminology is attributable to Diewert (196 130), this unit cost function being first aefil by Denny
(1974).



¢ (Pyyes Py) —\/ZZQK p"?py? (17.34)

i=1 k=1
where the parametebg satisfy the symmetry conditiofig = by; for all i andk, and the
parameter satisfies the restriction# 0. Diewert (1976, p. 130) showed that the unit cos
functionc’ defined by equation (17.34) is a flexible funcibform; i.e., it can approximate
an arbitrary twice continuously differentiable larly homogeneous functional form to the
second order. Note that wher 2,c" equals the homogeneous quadratic function defiyed
equation (17.22).

17.40 Define the quadratic mean of ordegrice indexP" by:

n 1 r/2
Zs(pj

P (p° p'.d’.q") = \/ (17.35)

r isJ{pioj—r/z
1

i=1 pi

wheres = g q/z; R ¢ is the period expenditure share for commoditgs usual.

17.41 Using exactly the same techniques as were usearagraphs 17.27 to 17.32, it can
be shown thalP' is exact for the aggregator function defined byatimpn (17.34); i.e., the
following exact relationship between the index nemformulaP" and the unit cost function
¢ holds:

PP, B of, )= LB (17.36)

c'(p")

Thus, under the assumption that the consumer eagagest-minimizing behaviour during
periods 0 and 1, and has preferences oven ttienmodities that correspond to the unit cost
function defined by equation (17.34), the quadrat&n of order price indexP" is exactly
equal to the true price indedf(p*)/c’(p%).%° SinceP" is exact forc” andc is a flexible
functional form, it can be seen that the quadmagan of order price indexP' is a
superlativandex for eachr # 0. Thus there are an infinite number of supertafixice

indices.

% See Diewert (1976, pp. 133-134).



17.42 For each price indeR', the product test (15.3) in Chapter 15 can be irsedder to

define the corresponding implicit quadratic meawrmierr quantity indexQ™:

> pg e
r* i= f
Q (pO, pl'qolql) = n . = fr*E30§
> p’g’P(p° p',a°,q")
i=1

(17.37)

wheref ™ is the aggregator function that corresponds &outhit cost functior” defined by

equation (17.343° For eachr 20, the implicit quadratic mean of ordeguantity indexQ™ is

also a superlative index.

17.43 Whenr = 2,P" defined by equation (17.35) simplifiesRg, the Fisher ideal price
index, andQ™* defined by equation (17.37) simplifies @, the Fisher ideal quantity index.
Whenr = 1, P" defined by equation (17.35) simplifies to:

P B, =t R =
Y 2Py pd

S pigt Zl PP
Zl pc Zl ¢y PP
P leqlm
> pi’ Zl ¢ P
Zn) prq

=5 /1Qu(P, P’ o, )
> pie (17.38)

=}

i=1

whereQyy is the Walsh quantity index defined previouslyaotnote 30 of Chapter 15. Thus

Q' is equal toQw, the Walsh quantity index, and hence it is alsaerlative quantity
index.

n
?® The functiorf™* can be defined by using as follows:f*(q) = 1/ max { Z pg :c(P) =1}
i=L



Superlative indices: The Torngvist index
17.44 In this section, the same assumptions that werkeroa the consumer in paragraphs
17.9to 17.17 are made. In particular, it is neuased that the consumer’s utility functibis

necessarily linearly homogeneous as in paragrapli81o 17.43.

17.45 Before the main result is derived, a preliminagsult is required. Suppose the

function ofnvariablesf(z,...,z,) = (2), is quadratic; i.e.,

n

QZJ’%ZZ R zzand ,a= ,aforall and  (17.39)

f(202)= 3+ n
i=1 i=1 k=1
where theg; and thegy are constants. L&(2) denote the first-order partial derivativefof
evaluated atx with respect to theh component of, z. Letfi(2) denote the second-order
partial derivative of with respect t@ andz. Then it is well known that the second-order
Taylor series approximation to a quadratic funct®axact; i.e., if is defined by equation
(17.39), then for any two point?, andz, the following equation holds:

Zn: f (zo){zil - zio}{zi - zlf} (17.40)

(2)- () =3 £, ()2 -2} +2

i=1 2 i=1 k=1
It is less well known that an average of two fostler Taylor series approximations to a
guadratic function is also exact; i.e.f i defined by equation (17.39) above, then for any
two points,Z andz', the following equation holds":

(2)- 1) = 2 {r @) + 1@z -] (17.41)
i=1

Diewert (1976, p. 118) and Lau (1979) showed thaa#don (17.41) characterized a
guadratic function and called the equationdbadratic approximation lemmén this

chapter, equation (17.41) will be called theadratic identity

17.46 Suppose that the consumertsst functiof® C(u,p), has the followingranslog

functional form?®

%" The proof of this and the foregoing relation ysstraightforward verification.
% The consumer’s cost function was defined by equdtld.6) above.

29 Christensen, Jorgenson and Lau (1971) introdthiedunction into the economics literature.



INC(u, p) =4, +Zn:a,. Inp, +%Zn“zn:a,.k Inp Inp, +bolnu+zn:q Inp Inu+%boo(lnu)2 (17.42)
i=1 i=1

i=1 k=1
where In is the natural logarithm function and plagametersy, ai, andb; satisfy the

following restrictions:
a, =a,, ».a =1> b =0and> a, =0forik=1..n (17.43)
i=1 i=1 k=1

These parameter restrictions ensure @{atp) defined by equation (17.42) is linearly
homogeneous ip, a property that a cost function must have. Itlmashown that the
translog cost function defined by equation (17 @) provide a second-order Taylor series

approximation to an arbitrary cost functigh.

17.47 Assume that the consumer has preferences thaspomd to the translog cost
function and that the consumer engages in costamizimg behaviour during periods 0 and 1.
Let p° andp* be the period 0 and 1 observed price vectors|etmf andg® be the period 0
and 1 observed quantity vectors. These assumptiguiy:

C(u®,p%=> p’q’ andC(u',p") => plg; (17.44)
i=1 i=1

whereC is the translog cost function defined above. Npwly Shephard’s Lemma, equation

(17.12), and the following equation results:

t t
q =%for i=1...,nandt =01
P
o o (17.45)
_C(u,p)ainC(u, p)
- p dln p,

Now use equation (17.44) to repla@el, p) in equation (17.45). After some cross
multiplication, this becomes the following:

t ot tonpt
npi a =g =Wfor i=1..,nandt =01 (17.46)
np.
pLq i
kZ:;, kHk
or

%0 |t can also be shown that, if all the= 0 andbg, = 0, thenC(u,p) = uC(1,p) = uc(p); i.e., with these additional
restrictions on the parameters of the general lwgreost function, homothetic preferences are d¢iselt of these
restrictions. Note that it is also assumed thditytil is scaled so thatis always positive.



s =a +> g np, +bInu'fori=1..nandt =01 (17.47)

k=1

wheres' is the period expenditure share on commodiity

17.48 Define the geometric average of the period 0 antllity levels asu*; i.e., define

u" =~Julut (17.48)

Now observe that the right-hand side of the equatat defines the natural logarithm of the
translog cost function, equation (17.42), is a gatc function of the variableg = Inp; if

utility is held constant at the levet. Hence the quadratic identity (17.41) can be gl

and the following equation is obtained:

InC(u", pt) - InC(u’, p°)

n * 0 ’ '
:EZ 0InC(u, p )+5|nC(U P) {In p'—In pio}
24 dolnp, dolnp,

=>>la+ anpi+binu’ +a +> aInp +b lnu*j(ln pt=In p°)
k=1 k=1

-1 a +Y.a Inp?+b Invu'u' +a +> a, Inp; +h In\/uoulj(ln pt—In pio) (17.49)
k=1 k=1

=>Yla+Y anp +binu’+a +3 a, Inp +b Inulj(ln p-=In p?)
k=1

2 i=1 k=1

n 0 0 ! '
=lz 0InC(u’, p7) , 9InC(u’, p) (|n pr—1In p?)
24 dlnp dlnp,

:% y (slo +§1)(In pr—In pio) using(17.46).

i=1

The last equation in (17.49) can be recognizett@sogarithm of the Torngvist—Theil index
number formul&r, defined earlier by equation (15.81) in ChapterHénce, exponentiating
both sides of equation (17.49) yields the followetgiality between the true cost of living
between periods 0 and 1, evaluated at the inteatesditility levelu* and the observable
Tornqvist—Theil indexPy:*

C(u’, p*) 0 1 0 A1
—— =P , 07,0, 17.50
cw. ) (P, Pp,a,a) ( )

31 This result is attributable to Diewert (19761@2).



Since the translog cost function which appearseridft-hand side of equation (17.49) is a

flexible functional form, the Térnqvist—Theil pritedex P+ is also a superlativiedex.

17.49 Itis somewhat mysterious how a ratio of unobdaleraost functions of the form
appearing on the left-hand side of the above eguatn be exactly estimated by an
observablendex number formula. The key to this mystery is #ssumption of cost-
minimizing behaviour and the quadratic identity.@1j, along with the fact that derivatives
of cost functions are equal to quantities, as $igeicby Shephard’s Lemma. In fact, all the
exact index number results derived in paragrapt71io 17.43 can be derived using
transformations of the quadratic identity alonghathephard’s Lemma (or Wold’s
Identity) 3? Fortunately, for most empirical applications, asswg that the consumer has
(transformed) quadratic preferences will be an adegjassumption, so the results presented
in paragraphs 17.27 to 17.49 are quite usefuldexmumber practitioners who are willing to
adopt the economic approach to index number th€dEgsentially, the economic approach
to index number theory provides a strong justifaafor the use of the Fisher price index
defined by equation (15.12), the Térnqvist—Theit@indexPr defined by equation (15.81),
the implicit quadratic mean of ordeprice indicesP™ defined by equation (17.32) (wherr

1, this index is the Walsh price index defined fQuation (15.19) in Chapter 15) and the
quadratic mean of orderprice indicesP" defined by equation (17.35). In the next sectioa,
ask if it matters which one of these formulae issgn as “best”.

The approximation properties of superlative indices

17.50 The results of paragraphs 17.27 to 17.49 provithe [statisticians with a large
number of index number formulae which appear tedpgally good from the viewpoint of the
economic approach to index number theory. Two quesiarise as a consequence of these
results:

» Does it matter which of these formulae is chosen?

+ |f it does matter, which formula should be chosen?

32 Se Diewert (2002a).

3 If, however, consumer preferences are non-homiothat the change in utility is substantial betw#entwo
situations being compared, then it may be desirfabt®mpute separately the Laspeyres—Konils andtRaas
Kondis true cost of living indices defined by eqoasi (17.3) and (17.4%(u’,p")/C(W®,p%) andC(u*,p*)/C(u*,p?),
respectively. In order to do this, it would be resagy to use econometrics and estimate empiritiadly
consumer’s cost or expenditure function.



17.51 With respect to the first question, Diewert (19@8888) showed that all of the
superlative index number formulae listed in parpgsal7.27 to 17.49 approximate each
other to the second order around any point whexéwio price vectorgy” andp’, are equal

and where the two quantity vectogd andqg’, are equal. In particular, this means that the

following equalities are valid for atlands not equal to 0, provided thpt = p* andq® = g*3*
R (p°, p,a% ) =P (p° p',a°,a) =P (p° p',q°, ") 75D
0 1 0 1 r 0 1 0 1 s* 0 1 0 1
0P, (", ') _ 9P (P, Pu’u) 0P (P" P ) (i g hangr=on  a7sp)
op, op, op,
0 1 0 1 r 0 1 0 1 s* 0 1 0 1
0P, (p". P, ) L OP" (", s P (P ) iy andemor a7sg
ooy oq; oq;

2 0 1 0 A1 2pr 0 1 40 A1 2ps* 0 1 40 A1
OR(P.P.a,q) _ OP(P,P.G.a) _ 0P (P.P.a.0) o k=1 nandt=01 @754)
op;0p, op;0p, op;0p,

GZPT(pO, pl,qo,ql) _ 62Pr(p0, pl’qo,ql) _ GZPS*(pO, pl,qo,ql) fori,k =1,...,nandt = 01 @7.55
opiaq. 9p'aq. 9p\day, o |

O°R(P%. pa’d) PP P a) LR PN A g i oy nfort=01 0756
ac d 0/ dq 0/ aq - |

where the Tornqvist—Thell price ind®x is defined by equation (15.81), the implicit
quadratic mean of orderprice indexP* is defined by equation (17.32) and the quadratic
mean of order price indexP' is defined by equation (17.35). Using the resulthe
previous paragraph, Diewert (1978, p. 884) condudtat “all superlative indices closely

approximate each other”.

17.52 The above conclusion is, however, not true evendh the equations (17.51) to
(17.56) are true. The problem is that the quadragian of order price indicesP" and the
implicit quadratic mean of ordemprice indiceP™ are (continuous) functions of the

parameters ands respectively. Hence, asands become very large in magnitude, the

3 To prove the equalities in equations (17.51)1t0%6), simply differentiate the various index n&nb
formulae and evaluate the derivativep®t p* andq® = g'. Actually, equations (17.51) to (17.56) are stille
provided thap' = Ap° andq® = 1&° for any numberd > 0 andu > 0; i.e., provided that the period 1 price vector
is proportional to the period O price vector anat the period 1 quantity vector is proportionattte period 0
guantity vector.



indicesP" andP®> can differ substantially from, sap? = P, the Fisher ideal index. In fact,
using definition (17.35) and the limiting propestief means of ordet® Robert Hill (2002,

p. 7) showed tha®" has the following limit as approaches plus or minus infinity:

1 1
rlirpw P (p°, p,q%,q') = rllrpm P (p° p'q° q) = \/mini {%} max (ﬂoj (17.57)

Using Hill's method of analysis, it can be showattthe implicit quadratic mean of order
price index has the following limit asapproaches plus or minus infinity:
lim P (p°, p*,q°,q") = lim P” (p°, p*,0°,q")

n

141
_ Zl PG (17.58)

e . .
;peqummi(gfojmax(g;j

Thus forr large in magnitude?” andP™ can differ substantially fror®r, P*, P* = P, (the
Walsh price index) anB” = P> = Pg (the Fisher ideal indexy.

17.53 Although Hill's theoretical and empirical resuttemonstrate conclusively that not all
superlative indices will necessarily closely appmoate each other, there is still the question
of how well the more commonly used superlative aéediwill approximate each other. For all
of the commonly used superlative indicsandP™, r lies in the interval & r < 237 Hill
(2002, p. 16) summarized how far apart the Torrcansl Fisher indices were, making all
possible bilateral comparisons between any two plaitats for his time series data set as
follows:

The superlative spread S(0,2) is also of intelieses in practice, Tornqgvist £ 0) and Fishem (= 2)

are by far the two most widely used superlativeekas. In all 153 bilateral comparisoB§),2) is less

than the Paasche—Laspeyres spread and on avérageperlative spread is only 0.1 per cent. Itis

because attention, until now, has focussed alma$tigively on superlative indexes in the ranger0

% See Hardy, Littlewood and Polya (1934).

% Hill (2000) documents this for two data sets. titise series data consist of annual expendituregamagtity
data for 64 components of United States gross dier@®duct from 1977 to 1994. For this data sé, (2000,
p. 16) found that “superlative indexes can diffgmhore than a factor of two (i.e., by more than p@® cent),
even though Fisher and Tornqvist never differ byertban 0.6 per cent”.

3" Diewert (1980, p. 451) showed that the Térngvidex R is a limiting case of Pasr tends to 0.



< 2 that a general misperception has persisteckiinthex number literature that all superlative ete

approximate each other closely.

Thus, for Hill's time series data set covering @nponents of United States gross domestic
product from 1977 to 1994 and making all possiliigtdéral comparisons between any two
years, the Fisher and Tornqvist price indices ckffieby only 0.1 per cent on average. This
close correspondence is consistent with the restitither empirical studies using annual

time series dat¥ Additional evidence on this topic may be foundCimapter 19.

17.54 In the earlier chapters of this manual, it is fddhat several index number formulae
seem “best” when viewed from various perspectiVésis the Fisher ideal indd¥ = P? =

P> defined by equation (15.12) seemed to be best foae axiomatic viewpoint, the
Torngvist—Theil price indefr defined by equation (15.81) seems to be best &other
axiomatic perspective, as well as from the stochagtwpoint, and the Walsh indéXy
defined by equation (15.19) (which is equal toithplicit quadratic mean of orderprice
indicesP™ defined by equation (17.32) wherr 1) seems to be best from the viewpoint of
the “pure” price index. The results presented ia fection indicate that for “normal” time
series data, these three indices will give virjutile same answer. To determine precisely
which one of these three indices to use as a ttiealrtarget or actual index, the statistical
agency will have to decide which approach to bikdtendex number theory is most
consistent with its goals. For most practical psgsy however, it will not matter which of
these three indices is chosen as a theoreticattangdex for making price comparisons

between two periods.

Superlative indices and two-stage aggregation

17.55 Most statistical agencies use the Laspeyres fatwaggregate prices in two stages.
At the first stage of aggregation, the Laspeyresifda is used to aggregate components of
the overall index (e.g., food, clothing, servicgbgn at the second stage of aggregation, these
component sub-indices are further combined intmtherall index. The following question

then naturally arises: does the index computediinstages coincide with the index

% See, for example, Diewert (1978, p. 894) or Righ822), which is reproduced in Diewert (1976185).



computed in a single stage? Initially, this quesi®addressed in the context of the

Laspeyres formul’

17.56 Suppose that the price and quantity data for gérig andd’, can be written in terms

of M subvectors as follows:
p' = (p‘l, PZ,.....,p™ )and q' = (q‘l,q‘?,...,qtM )for t=01 (17.59)
where the dimensionality of the subvect@’s and g™ is Ny form=1,2,...M with the sum

of the dimensionsl,, equal ton. These subvectors correspond to the price anditpidata

for subcomponents of the consumer price index éoiogt. Now construct sub-indices for
each of these components going from period O EpfL.the base period, set the price for each
of these subcomponents, €y form=1,2,..M, equal to 1 and set the corresponding base
period subcomponent quantities, €y form=1,2,...M, equal to the base period value of

consumption for that subcomponent fioe= 1,2,...M:
N

Py = landQy =) p’g™ form=12,..,M (17.60)
i=1

Now use the Laspeyres formula in order to constaymtriod 1 price for each subcomponent,

sayP, form=1,2,...M, of the CPI. Since the dimensionality of the subponent vectors,
p'~ and g™ ,differs from the dimensionality of the completeipd t vectors of prices and

quantitiesp' andd, it is necessary to use different symbols for éhmsbcomponent
Laspeyres indices, s&™ form=1,2,...M. Thus the period 1 subcomponent prices are

defined as follows:

N

Zm: piinom

Pr=P"(p”, p",q",q") = 2—— form=12,...,.M (17.61)

N

z piom qiom
i=1

Once the period 1 prices for tMesub-indices have been defined by equation (17t6é&i

corresponding subcomponent period 1 quantigsfor m= 1,2,...M can be defined by

39 Much of the material in this section is adaptedrf Diewert (1978) and Alterman, Diewert and Feenst
(1999). See also Balk (1996b) for a discussioritefrative definitions for the two-stage aggregationcept
and references to the literature on this topic.



Nip
deflating the period 1 subcomponent vaItEspilmqfm by the price®;*

i=1

Nm
2. PG
Q! E':lT for m=12,...,M (17.62)

m
m

Now define subcomponent price and quantity vedmreach period = 0,1 using equations
(17.60) to (17.62). Thus define the period 0 arstiicomponent price vectd?$ andP* as
follows:

P’ =(P°,P?,..RPY)=1, andP"' = (P',P},....P}) (17.63)
where 1, denotes a vector of ones of dimendi¢and the components Bt are defined by
equation (17.61). The period 0 and 1 subcomponesmtity vectorQ® andQ" are defined as

follows:

Q" =(Q/,Q,..-Qy JandQ" =(Q},Q;,---.Qu) (17.64)

where the components @F are defined in equation (17.60) and the componeir§e are
defined by equation (17.62). The price and quangigtors in equations (17.63) and (17.64)
represent the results of the first-stage aggregalNow use these vectors as inputs into the
second-stage aggregation problem; i.e., apply #spéyres price index formula, using the
information in equations (17.63) and (17.64) asitepnto the index number formula. Since
the price and quantity vectors that are inputs thi® second-stage aggregation problem have
dimensionM instead of the single-stage formula which utilizedtors of dimension, a
different symbol is required for the new Laspeyretex: this is chosen to k& *. Thus the
Laspeyres price index computed in two stages catebeted a® *(P°,P*,Q% Q%). Now ask
whether this two-stage Laspeyres index equalsdhesponding single-stage index that
was studied in the previous sections of this chrapte, ask whether

P.(P°,P,Q% Q") =R (p% p',q°,q") (17.65)

If the Laspeyres formula is used at each stagad aggregation, the answer to the above
guestion is yes: straightforward calculations shioat the Laspeyres index calculated in two

stages equals the Laspeyres index calculated istage.

17.57 Now suppose that the Fisher or Térnqvist formslased at each stage of the
aggregation. That is, in equation (17.61), supplaethe Laspeyres formula

P."(p%, p'",a°", g"") is replaced by the Fisher formwa™ (p°", p'",q°",g"") or by the

Torngvist formulaPy™ (p°", p*", g, g'"); and in equation (17.65), suppose that



P*(P°,PL,Q% Q" is replaced bye* (or by Pr*) and P (p°,p*,q%,q") is replaced by (or by
Pr). Then is it the case that counterparts are obdhia the two-stage aggregation result for

the Laspeyres formula, equation (17.65)? The ansa@y; it can be shown that, in general,

P;(F)O,Fi,ql’d)i II::)( IB! Ii (i! d‘) and P(p! P! Q! Qy TP( 1)1 ]pf (t], 1( (1766)
Similarly, it can be shown that the quadratic meharderr index number formul&"
defined by equation (17.35) and the implicit quaédraean of order index number formula

P™* defined by equation (17.32) are also not consisteaggregation.

17.58 Nevertheless, even though the Fisher and Tornfpristulae are not exactly
consistent in aggregation, it can be shown thaetiermulae are approximatetgnsistent in
aggregation. More specifically, it can be showrt tha two-stage Fisher formul* and the
single-stage Fisher formuRk in the inequality (17.66), both regarded as fuorddiof the A
variables in the vectors, p*, o, q', approximate each other to the second order araund
point where the two price vectors are equal (sbgha p*) and where the two quantity
vectors are equal (so thgtt= g%), and a similar result holds for the two-stage single-stage
Tornquist indices in equation (17.68)As was seen in the previous section, the singigest
Fisher and Torngvist indices have a similar appration property, so all four indices in the
inequality (17.66) approximate each other to tremsd order around an equal (or
proportional) price and quantity point. Thus formal time series data, single-stage and two-
stage Fisher and Tornqvist indices will usuallyninenerically very close. This result is
illustrated in Chapter 19 for an artificial data. e

17.59 Similar approximate consistency in aggregatiomnltsgto the results for the Fisher
and Tornqvist formulae explained in the previousageaph) can be derived for the quadratic
meanof orderr indices,P', and for the implicit quadratic mean of ordéndices,P™; see
Diewert (1978, p. 889). Nevertheless, the resultsilb (2002) again imply that the second-

order approximation property of the single-stagadyatic mean of orderindexP" to its

40 See Diewert (1978, p. 889). In other words, a stohgqualities similar to equations (17.51) to §6j.hold
between the two-stage indices and their singleestagnterparts. In fact, these equalities aretatdl provided
thatp' = Ap® andq® = 1P for any numbers > 0 andy > 0.

*1 For an empirical comparison of the four indice= Biewert (1978, pp. 894-895). For the Canadiascmer
data considered there, the chained two-stage Fisl&71 was 2.3228 and the corresponding chaiwesd t
stage Tdrngvist was 2.3230, the same values dbdarorresponding single-stage indices.



two-stage counterpart will break downraapproaches either plus or minus infinity. To see
this, consider a simple example where there angfoakr commaodities in total. Let the first
price ratiop;/p:° be equal to the positive numkteeret the second two price ratipd/p?°
equalb and let the last price rati/p.’ equalc, where we assunmee< ¢ anda < b < c. Using

Hill's result (17.57), the limiting value of thergjle-stage index is:

im P(F, . f, )= im P, B d @szini (%j max[%jﬁ 1767)

Now aggregate commodities 1 and 2 into a sub-agtgeand commodities 3 and 4 into
another sub-aggregate. Using Hill’s result (17 &Jain, it is found that the limiting price

index for the first sub-aggregate &b

and the limiting price index for the second sub-
aggregate istc*’>. Now apply the second stage of aggregation andilke result once
again to conclude that the limiting value of th@istage aggregation usiRjas the index

number formula isgb’c]**

. Thus the limiting value astends to plus or minus infinity of the
single-stage aggregate over the two-stage aggrigfaig*'%[ab’c]V* = [ac/b?]Y*. Nowb can
take on any value betwearandc, and so the ratio of the single-stage limitiigo its two-
stage counterpart can take on any value betwee}Y{and [c/a}”*. Sincec/a is greater than

1 anda/cis less than 1, it can be seen that the ratib@bingle-stage to the two-stage index
can be arbitrarily far from 1 ashecomes large in magnitude with an appropriatecehof

the numbers, b andc.

17.60 The results in the previous paragraph show thaescaution is required in assuming
thatall superlative indices will be approximately consist@ aggregation. However, for the
three most commonly used superlative indices (thledf ideaPr, the Tornqvist—TheiP

and the Walsl®y), the available empirical evidence indicates thase indices satisfy the
consistency in aggregation property to a suffi¢iehigh degree of approximation that users

will not be unduly troubled by any inconsistencies.

The Lloyd—Moulton index number formula
17.61 The index number formula that will be discussethia section on the single

household economic approach to index number theapotentially very useful one for

2 See Chapter 19 for some additional evidence srtdipic.



statistical agencies that are faced with the prol#é producing a CPI in a timely manrf@r.
The Lloyd—Moulton formula that will be discussedinis section makes use of the same
information that is required in order to implemantaspeyres index except for one additional

piece of information.

17.62 In this section, the same assumptions about theutoer are made that were made in
paragraphs 17.18 to 17.26 above. In particula,assumed that the consumer’s utility
functionf(q) is linearly homogeneoffsand the corresponding unit cost function(s). It is

supposed that the unit cost function has the fotigiunctional form:

N 1(1-0) n
c(p) EaO(ZGi pﬁ“’] if c#lorinc(p)=a,+> a,Inp, if c=1  (17.68)
i=1 i=1

n
where thea; ando are non-negative parameters WEWi =1. The unit cost function defined
i=1

by equation (17.68) corresponds to a constanti@kysdf substitution (CES) aggregator
function, which was introduced into the economitature by Arrow, Chenery, Minhas and
Solow (1961)° The parameteris the elasticityf substitution; wherr = 0, the unit cost
function defined by equation (17.68) becomes linegrices and hence corresponds to a
fixed coefficients aggregator function which exksld substitutability between all
commodities. Whemr = 1,the corresponding aggregator or utility fuotis a Cobb—Douglas
function. Wheno approachesc#, the corresponding aggregator functi@pproaches a

linear aggregator function which exhibits infingebstitutability between each pair of inputs.
The CES unit cost function defined by equation§&Yis not a fully flexible functional form
(unless the number of commoditiebeing aggregated is 2), but it is considerably more
flexible than the zero substitutability aggregdtorction (this is the special case of equation

(17.68) whereris set equal to zero) that is exact for the Lasgegnd Paasche price indices.

3 Walter Lane pointed out that the timeliness idsuetatistical agencies should have been stresadigr in
Chapters 15 and 16, since normally, statisticahaigs do not have current period information onngjtias or
values available. Hence CPI programs are forceséahe Laspeyres, Lowe or Young formulae rattem the
theoretically preferred superlative indices sirtoeformer indexes do not require current periochtjtyaor
value information. Nevertheless, superlative indican be calculated (at least approximately) delayed
basis or they can be used as target indices.

* Thus homothetic preferences are assumed in tbi®se

*In the mathematics literature, this aggregatoction or utility function is known as a mean of erd an,
where in this context=1-g; see Hardy, Littlewood and Polya (1934, pp. 12-13)



17.63 Under the assumption of cost minimizing behaviayseriod 0, Shephard’s Lemma
(17.15), tells us that the observed first periodstomption of commoditi; °, will be equal
to u® ac(p°)/dp;, wheredc(p®)/dp; is the first-order partial derivative of the uodst function
with respect to theth commodity price evaluated at the period 0 praresu’ = f(q°) is the
aggregate (unobservable) level of period 0 utilitging the CES functional form defined by

equation (17.68) and assuming tbat 1, the following equations are obtained:

_ue(p)a, (p?)” (17.69)
zak(pg)r
k=1
These equations can be rewritten as:
00 0y\r
PG __a(P) fori=12..n (17.70)

o) S (o)

wherer = 1 - . Now consider the following Lloyd (1975) Moultoh996a) index number

formula:

1/(1-0)

n 1 1-o
P (%, p,0%q") = {Z SO[&OJ } for o #1 (17.71)
i=1 P;
wheres? is the period 0 expenditure share of commoiiag usual:

0,0
s Enp'—qifor i=12,...n
> P
k=1
oy
- u’c(p°)
- a,(p’)'
zak(pg)r
k=1

usingtheassumptiomf costminimizingbehaviour (17.72)

usingequation(17.70)

If equation (17.72) is substituted into equation.{1), it is found that:



1/r
n 1\’
PLM(p°,pl,q°,q1)={Z%°(£Lj }

_ Z a,(p’)' (g;]

P

1/r

usingr =1- o anddefinition(17.68) (17.73)

17.64 Equation (17.73) shows that the Lloyd—Moulton madember formuld, y is exact
for CES preferences. Lloyd (1975) and Moulton (1296dependently derived this result,
but it was Moulton who appreciated the significantéhe formula (17.71) for statistical
agency purposes. Note that in order to evaluatadta (17.71) numerically, it is necessary to
have information on:

« base period expenditure shasfs

« the price relativeg’/p® between the base period and the current periat; an

* an estimate of the elasticity of substitution bedwéhe commaodities in the aggregate,
The first two pieces of information are the staddaformation sets that statistical agencies
use to evaluate the Laspeyres price indegnote thaP y reduces té if o= 0). Hence, if
the statistical agency is able to estimate thdieigsof substitutiono based on past

experiencé? then the Lloyd—Moulton price index can be evaldatsing essentially the same

“ For the first application of this methodology {ire context of the CPI), see Shapiro and Wilc®9{a,

pp. 121-123). They calculated superlative Torngwidices for the United States for the years 1986x&d then
calculated the Lloyd Moulton CES index for the sgmeéod, using various values af They then chose the
value ofg (which was 0.7), which caused the CES index tstralmsely approximate the Térnqvist index.
Essentially the same methodology was used by Alarmiewert and Feenstra (1999) in their study wited
States import and export price indices. For alté&raanethods for estimating, see Balk (2000b).



information set that is used in order to evaluheettaditional Laspeyres index. Moreover, the
resulting CPI will be free of substitution biasa@easonable degree of approximafib®f
course, the practical problem with implementing tinethodology is that estimates of the
elasticity of substitution parameterare bound to be somewhat uncertain, and hence the
resulting Lloyd Moulton index may be subject to igjes that it is not objective or
reproducible. The statistical agency will have &balnce the benefits of reducing substitution

bias with these possible costs.

Annual preferences and monthly prices

17.65 Recall the definition of the Lowe indeR,(p’,p",q), defined by equation (15.15) in
Chapter 15. In paragraphs 15.33 to 15.64 of Chdieit is noted that this formula is
frequently used by statistical agencies as a tangek for a CPI. It is also noted that, while
the price vectorg® (the base period price vector) guidthe current period price vector) are
monthlyor quarterly price vectors, the quantity veacg (qi1,0p, - -.,0n) Which appears in this
basket-type formula is usually taken to be an ahquantity vector that refers to a bagsar,
b say, that is prior to the base period for thegwjenonth 0. Thus, typically, a statistical
agency will produce a CPI at a monthly frequenayt tras the forn®Lo(p°,p',a°), wherep® is
the price vector pertaining to the base period mémt prices, month Q' is the price vector
pertaining to the current period month for pricesntht say, andy” is a reference basket
quantity vector that refers to the base yeawhich is equal to or prior to montH*®The
guestion to be addressed in the present secti@arsthis index be related to one based on

the economic approach to index number theory?

The Lowe index as an approximation to a true cost of living index
17.66 Assume that the consumer has preferences defirercdconsumption vectors=
[0a,...,0n] that can be represented by the continuous incrgasility functionf(q). Thus if

f(g") > f(q°), then the consumer prefers the consumption vettrg’. Letq® be the annual

*"What is a “reasonable” degree of approximatioretiels on the context. Assuming that consumers h&®& C
preferences is not a reasonable assumption inothtext of estimating elasticities of demand: asteasecond-
order approximation to the consumer’s preferensesquired in this context. In the context of apjr@ting
changes in a consumer’s expenditures omtt@mmodities under consideration, however, it isallgladequate
to assume a CES approximation.

8 As noted in Chapter 15, month 0 is called theepraference period and ydais called the weight reference
period.



consumption vector for the consumer in the base lyeBefine the base year utility leuél

as the utility level that correspondsf(q) evaluated at:

ub = f(qb) (1774)

17.67 For any vector of positive commodity priges [p.,....ps] and for any feasible utility
levelu, the consumer’s cofiinction,C(u, p), can be defined in the usual way as the
minimum expenditure required to achieve the utiltyel u when facing the pricegs

C(u, p)Eminq{i pg: f(q,...,q)= L} (17.75)

Letp® = [ps”,....p7] be the vector of annual prices that the constfard in the base yelr
Assume that the observed base year consumptioang®e [o:°,...,a.7] solves the following

base year cost minimization problem:
C(u®, p) = minq{Z p’g 1 F(0y,...,0y) = ub} =Y prg” (17.76)
i=1 i=1

The cost function will be used below in order tdirmkethe consumer’s cost of living price

index.

17.68 Letp” andp' be the monthly price vectors that the consumessfac months 0 and t.
Then the Konds true cost of living indé(p’, p', g°), between months 0 andusing the
base year utility leval’® = f(q°) as the reference standard of living, is definethe following
ratio of minimum monthly costs of achieving thdlitytilevel u®:

C(f(").p) 17.77)
C(f(@). p%)

P.(p°,p'.a") =
17.69 Using the definition of the monthly cost minimiat problem that corresponds to the

costC(f(qP), p'), it can be seen that the following inequalitydwl

n (17.78)
< Z pitqib
=

since the base year quantity veaidis feasible for the cost minimization problem. Sy,
using the definition of the monthly cost minimizatiproblem that corresponds to the month
0 costC(f(q°), p°), it can be seen that the following inequalitydwol



C(f(g”),p°%) = minq{i pg : f(ay,....0,) = f(qf,---,QE)}
= (17.79)

since the base year quantity veafdis feasible for the cost minimization problem.

17.70 It will prove useful to rewrite the two inequadi (17.78) and (17.79) as equalities.
This can be done if non-negative substitution Bass,e' ande’, are subtracted from the
right-hand sides of these two inequalities. Thesitlequalities (17.78) and (17.79) can be

rewritten as follows:

C(u®, p")=> plof -¢€ (17.80)
i=1

C®,p’) =) p’q’ ¢ (17.81)
i=1

17.71 Using equations (17.80) and (17.81), and the diefin(15.15) in Chapter 15 of the

Lowe index, the following approximate equality tbe Lowe index results:

% t b
PL(p",p'.q") = ;p'qi _jew.p) e

Zpioqib {C(U P )+e} (17.82)
:C(Ub'pt)zp 0 At b
(. p°) «(P",p.a%)

Thus if the non-negative substitution bias teghande' are small, then the Lowe index
between months 0 andR,o(p°, p, o), will be an adequate approximation to the trust o
living index between months 0 andk(p°, p', o).

17.72 A bit of algebraic manipulation shows that the leowdex will be exactly equal to its

cost of living counterpart if the substitution btasms satisfy the following relationship:

e _C(’,p) 0 At b
— = '’ =P b, 17.83
e® C(u®, p° QUELEED ( )

9 This assumes that is greater than zero. ¢f is equal to zero, then to have equalitfPpfandP,,, it must be
the case that is also equal to zero.



Equations (17.82) and (17.83) can be interpretddlisvs: if the rate of growth in the
amount of substitution bias between months Otas@qual to the rate of growth in the
minimum cost of achieving the base year utilityeley’ between months 0 and t, then the
observable Lowe indeR o(p°, p', o), will be exactly equal to its true cost of liviipex

counterpartP«(p°,p',aP).>°

17.73 lItis difficult to know whether condition (17.88)ll hold or whether the substitution
bias terms” ande' will be small. Thus, first-order and second-or@laylor series

approximations to these substitution bias termglaveloped in paragraphs 17.74 to 17.83.

A first-order approximation to the bias of the Loweindex

17.74 The true cost of living index between months 0 aning the base year utility level
u” as the reference utility level, is the ratio obtunobservable cost€(U®, p)/C(u’,p?).
However, both of these hypothetical costs can Ipecegmated by first-order Taylor series
approximations that can be evaluated using obskrvalormation on prices and base year
quantities. The first-order Taylor series approsiorato C(u, p') around the annual base

year price vectop” is given by the following approximate equatin:
oC(u®, p°
C(u®, p') =C(u°, p°) + z{%}[m - p]

=C(u°, p°) + z qib[pit - pib] usingShephardi Lemma(17.12)
=L (17.84)

‘i ra’ +Zq. [ - '] using(17.76)

i=1
Similarly, the first-order Taylor series approxiioatto C(u®,p°) around the annual base year

price vectomp”® is given by the following approximate equation:

%It can be seen that, when month set equal to month & = €® andC(u”,p') = C(u*,p%), and thus equation
(17.83) is satisfied anid_, = Px. This is not surprising since both indices areat¢tpi unity whert = 0.

*1 This type of Taylor series approximation was uiseSchultze and Mackie (2002, p. 91) in the codivirig
index context, but it essentially dates back tokslif1941-42, p. 134) in the consumer surplus cangee also
Diewert (1992b, p. 568) and Hausman (2002, p. 8).



C(u®, p°) =C(u°, p°) + i{%pp)}[p.o - Dib]

=C(u’, p)+ iqf’[p? - p’]

D plad + o [p° - ]
i=1

p’g
i=1

(17.85)

i=1

b
i

17.75 Comparing approximate equation (17.84) with equma{iL7.80), and comparing
approximate equation (17.85) with equation (17.819an be seen that, to the accuracy of the
first-order approximations used in (17.84) and §5. the substitution bias terrdsande”

will be zero. Using these results to reinterpretdpproximate equation (17.82), it can be
seen that if the month 0 and monftrice vectorsp® andp', are not too different from the
base year vector of pricg8 then the Lowe indeR o(p°, p', ) will approximate the true

cost of living indexPx(p°, p', qb) to the accuracy of a first-order approximatiohislresult is
quite useful, since it indicates that if the moptptice vectorg® andp' are just randomly
fluctuating around the base year pripBgwith modest variances), then the Lowe index will
serve as an adequate approximation to a theoretsabf living index. However, if there are
systematic long-term trends in prices and mamsHairly distant from month O (or the end of
yearb is quite distant from month 0), then the first-@rdpproximations given by
approximate equations (17.84) and (17.85) may ngdobe adequate and the Lowe index
may have a considerable bias relative to its cblting counterpart. The hypothesis of long-

run trends in prices will be explored in paragrapis/6 to 17.83.

A second-order approximation to the substitution bas of the Lowe index

17.76 A second-order Taylor series approximatiol©(a®, p') around the base year price

vectorp® is given by the following approximate equation:
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where the last equality follows using approximajaaion (17.84§2 Similarly, a second-

(17.86)

order Taylor series approximation@u®, p°) around the base year price veqdrs given

by the following approximate equation:

C(u®,p°) =C(u’,p )+Z{M}[pio— o]

=1 op,
n n 2C(U p) o bl[0_ b
(j;;[ op,0p, }[pi pi][pi pj] (17.87)
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where the last equality follows using the approxereguation (17.85).

17.77 Comparing approximate equation (17.86) with equma{iL7.80), and approximate
equation (17.87) with equation (17.81), it can eersthat, to the accuracy of a second-order
approximation, the month 0 and monsubstitution bias terms® and & will be equal to the
following expressions involving the second-ordertiphderivatives of the consumer’s cost

functiond’C(u’,p°)/dpidp; evaluated at the base year standard of liufhand at the base year

pricesp™:
o {322{6 (;é,uap,p )}[pio - ][0 - p] (17.89)
R

*2 This type of second-order approximation is attidle to Hicks (1941-42, pp. 133-134) (1946, p.)3%ke
also Diewert (1992b, p. 568), Hausman (2002, p.ab®l) Schultze and Mackie (2002, p. 91). For altérea
approaches to modelling substitution bias, see Bie(1998a; 2002c,

pp. 598-603) and Hausman (2002).



Since the consumer’s cost functiGu, p) is a concave function in the components of the
price vectom,>® it is knowrr* that then by n (symmetric) matrix of second-order partial
derivatives §°C(uP, pb)lapiap,-] is negative semi-definit&. Hence, for arbitrary price vectors
pb, p° andp', the right-hand sides of approximations (17.88) @rv.89) will be non-negative.
Thus, to the accuracy of a second-order approximatie substitution bias terreSande'

will be non-negative.

17.78 Now assume that there are long-run systematidsrenprices. Assume that the last
month of the base year for quantities océdrmonths prior to month 0, the base month for
prices, and assume that prices trend linearly tiitle, starting with the last month of the base
year for quantities. Thus, assume the existencermdtantsy; forj = 1,...n such that the

price of commodity in monthtis given by:

pl=p’+a,(M +t) fori =1,..,nandt =0,1,..T (17.90)

Substituting equation (17.90) into approximatiohs.88) and (17.89) leads to the following
second-order approximations to the two substitubias termse’ ande'":>®

e =yM? (17.91)
e = y(M +t)? (17.92)
whereyis defined as follows:

__( jiil: ZC(U P )j| O'iO'jZO (1793)

i j=1 ap|ap]

17.79 It should be noted that the parameterill be zero under two sets of conditiotfs:

%3 See Diewert (1993b, pp. 109-110).
** See Diewert (1993b, p. 149).

%> A symmetricn by n matrix A with ijth element equal ta; is negative semi-definite if, and only if for eyer

n n
vectorz= [z,...,z,), it is the case thaEqu 2z, <0.

i=1 j=1

°6 Note that the period 0 approximate bias definethkeyright-hand side of approximation (17.91) igfix
while the period approximate bias defined by the right-hand sid€l@f92) increases quadratically with time
Hence, the periotlapproximate bias term will eventually overwhelm gregiod 0 approximate bias in this
linear time trends case,tifs allowed to become large enough.



» All the second-order partial derivatives of the @mamer’s cost function
d°C(u°,p")/dpidp; are equal to zero.
« Each commodity price change parametgs proportional to the corresponding
commodityj base year pricg”.*®
The first condition is empirically unlikely sinceimplies that the consumer will not
substitute away from commodities of which the eaprice has increased. The second
condition is also empirically unlikely, since it pines that the structure of relative prices
remains unchanged over time. Thus, in what follatwsjll be assumed thatis a positive

number.

17.80In order to simplify the notation in what followdefine the denominator and numerator

of the montht Lowe index,PLo(p°, p', o), asa andb respectively; i.e., define:

a=) p’q’ (17.94)
i=1

b= Z p'g’ (17.95)
i=1

Using equation (17.90) to eliminate the month @esp,° from equation (17.94) and the
montht pricesp;' from equation (17.95) leads to the following exgsiens fora andb:

a= z pra’ + zai g’M (17.96)
i=1 i=1

b=> pPaP + > a,qP (M +t) (17.97)
i=1 i=1

It is assumed that andb®® are positive and that

> aq =0 (17.98)

" A more general condition that ensures the posjtivi yis that the vectord,...,ar] is not an eigenvector of
the matrix of second-order partial derivati@é@(u,p)/apiapj that corresponds to a zero eigenvalue.

%8 |t is known thatC(u,p) is linearly homogeneous in the components optitee vectorp; see Diewert (1993b,
p. 109) for example. Hence, using Euler’'s Theorerh@mogeneous functions, it can be shownphiat an
eigenvector of the matrix of second-order partiai\zhtiveSOZC(u,p)/apiapj that corresponds to a zero

n n
eigenvalue and thugz [0°C(u,p)/dpidp] p°p° = O; see Diewert (1993b, p. 149) for a detailezbpof this

i=1 j=1
result.

9 |t is also assumed that-ay M? is positive.



Assumption (17.98) rules out a general deflatioprioes.

17.81 Define the bias in the monti.owe index,B', as the difference between the true cost
of living index P«(p°,p',q°) defined by equation (17.77) and the correspontivge index
PLo(p’, ', o):

B' =R (p", p'.a") - P,(p°, p".0")

_ {%} - (gj using(17.94)and(17.95)
(b-e]} (b |
= {a o } - (5) using(17.80)and(17.81)
- {%NTPZ]} - (gj using(17.91)and(17.92)
= y{(b - a{):lﬂaz__yzl\jl\z/lﬁ_ atz} simplifying terms

{Z a qf’t}M 2 - 2{2 P+ Y g M }Mt - atz}
=y Lz {a[la Y Zi]? using(17.96)and(17.97)

{Zn: a qf’t}M 2 + Z{Zn: pf’qf’}Mt + atz}

I {da-ym?} (17.99)
<0 using(17.98).

Thus, fort > 1, the Lowe index will have an upward bias (to @lseuracy of a second-order
Taylor series approximation) compared to the cpaoading true cost of living index
PK(po,pt,qb), since the approximate bias defined by the lagtession in equation (17.99) is
the sum of one non-positive and two negative teMweover, this approximate bias will

grow quadratically in time®°

17.82 In order to give the reader some idea of the ntadaiof the approximate bi&s
defined by the last line of equation (17.99), aarspecial case will be considered at this

point. Suppose there are only two commodities &at at the base year, all prices and

quantities are equal to 1. Thys,=q" = 1 fori = 1,2 and)_ p’q =2. Assume thaM = 24
i=1

% |f M is large relative to, then it can be seen that the first two terméénlast equation of (17.99) can
dominate the last term, which is the quadratitterm.



so that the base year data on quantities take éamsyto process before the Lowe index can
be implemented. Assume that the monthly rate ofvggron price for commodity 1 ign =

0.002 so that after one year, the price of comnyddiises 0.024 or 2.4 per cent. Assume that
commodity 2 falls in price each month with = — 0.002 so that the price of commodity 2
falls 2.4 per cent in the first year after the bysar for quantities. Thus the relative price of
the two commodities is steadily diverging by abbyter cent per year. Finally, assume that
0°C(U°,p°)/apidp1 = 9°C(L°,p°)/ap29p, = — 1 andd*C(uP,p°)/dp1dp, = 9°C(U’,p")/dpa0p: = 1.

These assumptions imply that the own elasticitggerhand for each commodity-sl at the

base year consumer equilibrium. Making all of thesgeumptions means that:
2=> p’g’=a=b > a,q° =0 M =24;y=0.000008 (17.100)
i=1 i=1

Substituting the parameter values defined in equgtl7.100) into equation (17.99) leads to
the following formula for the approximate amourdttthe Lowe index will exceed the
corresponding true cost of living index at motith

2
_B' =0.000008 [oar+217)
2(2-0.004609

Evaluating equation (17.101) &t 12,t = 24,t = 36,t = 48 andt = 60 leads to the following

(17.101)

estimates for B": 0.0029 (the approximate bias in the Lowe indethatend of the first year

of operation for the index); 0.0069 (the bias aftev years); 0.0121 (the bias after three
years); 0.0185 (the bias after four years); 0.0@26@ bias after five years). Thus, at the end of
the first year of the operation, the Lowe index Wé above the corresponding true cost of
living index by only approximately a third of a pentage point but, by the end of the fifth
year of operation, it will exceed the correspondiogt of living index by about 2.6

percentage points, which is no longer a negligitount®*

17.83 The numerical results in the previous paragrapltoaty indicative of the approximate
magnitude of the difference between a cost of §juimdex and the corresponding Lowe
index. The important point to note is that, to #teuracy of a second-order approximation,
the Lowe index will generally exceed its cost @frig counterpart. The results also indicate,

however, that this difference can be reduced tegligible amount if:

®1 Note that the relatively large magnitudeMbEompared td leads to a bias that grows approximately linearly
with t rather than quadratically.



» the lag in obtaining the base year quantity weightainimized; and

« the base year is changed as frequently as possible.
It should also be noted that the numerical residfgend on the assumption that long-run
trends in prices exist, which may not be tftiand on elasticity assumptions that may not be
justified ® Statistical agencies should prepare their ownfatlyeconstructed estimates of the
differences between a Lowe index and a cost afighwndex in the light of their own

particular circumstances.

The problem of seasonal commodities

17.84 The assumption that the consumer has annual prefes over commodities
purchased in the base year for the quantity wejgimd that these annual preferences can be
used in the context of making monthly purchaseb®fsame commodities, was a key one in
relating the economic approach to index numberrtheothe Lowe index. This assumption
that annual preferences can be used in a monthigxbis, however, somewhat questionable
because of the seasonal nature of some commodithgses. The problem is that it is very
likely that consumers’ preference functions systi@rally change as the season of the year
changes. National customs and weather changes lbauseholds to purchase certain goods
and services during some months and not at abitfeer months. For example, Christmas
trees are purchased only in December and ski ja@tetnot usually purchased during
summer months. Thus, the assumption that annutdrprees are applicable during each

month of the year is only acceptable as a verym@apmproximation to economic reality.

17.85 The economic approach to index number theory eaadapted to deal with seasonal
preferences. The simplest economic approach issonae that the consumer has annual
preferences over commodities classified not onlyhiayr characteristics but also by the
month of purchas® Thus, instead of assuming that the consumer’sanutility function is

%2 For mathematical convenience, the trends in prigere assumed to be linear, rather than the nairzal
assumption of geometric trends in prices.

% Another key assumption that was used to derigenttmerical results is the magnitude of the divergrends
in prices. If the price divergence vector is dodiiea; = 0.004 andh, = — 0.004, then the parameter
guadruples and the approximate bias will also quzldr

% This assumption and the resulting annual indiceeviirst proposed by Mudgett (1955, p. 97) and&to
(1956, pp. 74-75).



f(g) whereq is ann-dimensional vector, assume that the consumer’samutility function is
F[F(q), (), ....F4(g"))] whereq' is ann dimensional vector of commodity purchases made
in Januaryg’ is ann dimensional vector of commodity purchases madeebréary, ..., and
q'%is ann dimensional vector of commaodity purchases madedoeinbef> The sub-utility
functionsf', %, ... f**represent the consumer’s preferences when makirgpases in
January, February, ...., and December, respectiVélgse monthly sub-utilities can then be
aggregated using the macro-utility functiéin order to define overall annual utility. It can
be seen that these assumptions on preference® aased to justify two types of cost of
living index:
* an annual cost of living index that compares thegsrin all months of a current year
with the corresponding monthly prices in a base;§2and
* 12 monthly cost of living indices where the index monthm compares the prices of
monthm in the current year with the prices of monthin the base year fon =
1,2,...,12%

17.86 The annual Mudgett-Stone indices compare cosascurrent year with the
corresponding costs in a base year. However, amgimaould be chosen as the year-ending
month of the current year, and the prices and dgfisdf this new non-calendar year could
be compared to the prices and quantities of the pear, where the January prices of the
non-calendar year are matched to the January prfaée base year, the February prices of
the non-calendar year are matched to the Februagspof the base year, and so on. If
further assumptions are made on the macro-utilibcfionF, then this framework can be
used in order to justify a third type of cost afifig index: a moving year annual ind®XThis
index compares the cost over the past 12 monthsloéving the annual utility achieved in
the base year with the base year cost, where theadacosts in the current moving year are

matched to January costs in the base year, thei&gbcosts in the current moving year are

% |f some commodities are not available in certabnthsm, then those commodities can be dropped from the
corresponding monthly quantity vectafs

% For further details on how to implement this feamork, see Mudgett (1955, p. 97), Stone (1956 78p75)
and Diewert (1998b, pp. 459-460).

7 For further details on how to implement this feamork, see Diewert (1999a, pp. 50-51).

8 See Diewert (1999a, pp. 56-61) for the detailtisf economic approach.



matched to February costs in the base year, and.sbhese moving year indices can be
calculated for each month of the current year &aed¢sulting series can be interpreted as

(uncentred) seasonally adjusted (annual) priceesi?

17.87 It should be noted that none of the three typaadites described in the previous two
paragraphs is suitable for describing the movemaingsices going from one month to the
following month; i.e., they are not suitable foisdabing short-run movements in inflation.
This is obvious for the first two types of indexo $ee the problem with the moving year
indices, consider a special case where the buridleromodities purchased in each month is
entirely specific to each month. Then it is obvithat, even though all the above three types
of index are well defined, nored them can describe anything useful about morntmémth
changes in prices, since it is impossible to comfize with like, going from one month to
the next, under the hypotheses of this special ¢aiseimpossible to compare the

incomparable.

17.88 Fortunately, it is not the case that householdipases in each month are entirely
specific to the month of purchase. Thus month-taving@rice comparisons can be made if
the commodity space is restricted to commodities éine purchased in each month of the
year. This observation leads to a fourth type et @b living index, a month-to-month index,
defined over commodities that are available in gweonth of the yeaf® This model can be
used to justify the economic approach describgzhimagraphs 17.66 to 17.83. Commodities
that are purchased only in certain months of tree, yJ@wever, must be dropped from the
scope of the index. Unfortunately, it is likely titmnsumers have varying monthly
preferences over the commodities that are alwagsadle and, if this is the case, the month-
to-month cost of living index (and the correspogdirowe index) defined over always-
available commodities will generally be subjecséasonailuctuations. This will limit the
usefulness of the index as a short-run indicatgyesferal inflation since it will be difficult to

distinguish a seasonal movement in the index frayséematic general movement in

%9 See Diewert (1999a, pp. 67-68) for an empirizaneple of this approach applied to quantity indices
empirical example of this moving year approachriogindices is presented in Chapter 22.

0 See Diewert (1999a, pp. 51-56) for the assumptampreferences that are required in order tifyusis
economic approach.



prices’* Note also that if the scope of the index is restd to always-available commodities,
then the resulting month-to-month index will notdmmprehensive, whereas the moving year

indices will be comprehensive in the sense of uaihthe available price information.

17.89 The above considerations lead to the conclusiahitimay be useful for statistical
agencies to produce at least two consumer prigeasd
* amoving year index which is comprehensive andaesdly adjusted, but which is
not necessarily useful for indicating month-to-nmoahanges in general inflation; and
» a month-to-month index which is restricted to neasonal commodities (and hence
is not comprehensive), but which is useful for @ading short-run movements in

general inflation.

The problem of a zero price increasing to a posite price

17.90 In arecent paper, Haschka (2003) raised the gnolof what to do when a price
which was previously zero is increased to a posigvel. He gave two examples for Austria,
where parking and hospital fees were raised frora ea positive level. In this situation, it
turns out that basket-type indices have an advardagr indices that are weighted geometric
averages of price relatives, since basket-typeeware well defined even if some prices are

Zero.

17.91 The problem can be considered in the context afuaing the Laspeyres and
Paasche indices. Suppose as usual that the prieesl quantities;' of the firstn
commodities are positive for periods 0 and 1, dad the price of commodity+1 in period O
is zero but is positive in period 1. In both pedpthe consumption of commodity-1 is
positive. Thus the assumptions on the prices aadtgies of commodity+1 in the two

periods under consideration can be summarizedllasvi

Pry =0 Pry>0 qpy >0 qp,, >0 (17.102)

"L One problem with using annual weights in the cxindé seasonal movements in prices and quantiiéisat a
change in price when a commodity is out of seasonbe greatly magnified by the use of annual wsight
Baldwin (1990, p. 251) noted this problem with amaal weights price index: “But a price index ivebely
affected if any seasonal good has the same bdsket for all months of the year; the good will have
inappropriately small basket share in its in seasonths, an inappropriately large share in itssefison
months.” Seasonality problems are considered dgaim a more pragmatic point of view in Chapter 22.



Typically, the increase in price of commodityl from its initial zero level will cause
consumption to fall so thag.1* < g1, but this inequality is not required for the arsigy

below.

17.92 Let the Laspeyres index between periods 0 anesiricted to the firsh commodities,
be denoted aB," and let the Laspeyres index, defined ovenall commodities, be defined
asP ™. Also letv’ = p°g° denote the value of expenditures on commaidityperiod O.

Then by the definition of the Laspeyres index defimver alh+1 commodities:
nzﬂ 1.0
RG;
Pt = oL (17.103)

n+l

> p’
i=1

1 0
— n pn+1qn+l
= PL +n—
2
i=1

wherepn:1° = 0 was used in order to derive the second equatiove. Thus the complete
Laspeyres indeR, " defined over alh+1 commodities is equal to the incomplete Laspeyres
indexP." (which can be written in traditional price relatiand base period expenditure share
form), plus the mixed or hybrid expenditymg:'a.+1° divided by the base period expenditure
on the firstn commodities,zn“vi0 . Thus the complete Laspeyres index can be caéxlat

i=1
using the usual information available to the pstaistician plus two additional pieces of
information: the new non-zero price for commodityl in period 1p,:1*, and an estimate of
consumption of commodity+1 in period O (when it was free),..°. Since it is usually
governments who change a previously zero pricepos#tive price and they usually
announce the decision in advance, the price stagistusually has an opportunity to form an

estimate of the base period demampg’.

17.93 Let the Paasche index between periods 0 andtticted to the firsh commodities,
be denoted aBp" and let the Paasche index, defined oven-&ll commodities, be defined as
P, Also letvi* = pi'gi* denote the value of expenditures on commaidityperiod 1. Then,

by the definition of the Paasche index defined @lem+1 commodities:



n+l

1.1

2P
n+1_ i=1
P n+l
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Zlq

_pr eV (17.104)
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i1
wherepn.:° = 0 was used in order to derive the second equatiove. Thus the complete
Paasche indeRp™" defined over alh+1 commodities is equal to the incomplete Paasche
indexPp" (which can be written in traditional price relaiand current period expenditure
share form), plus the current period expenditureammodityn+1, vy+1*, divided by a sum
of current period expenditures on the finstommoditiesy*, divided by théth price relative
for the firstn commoditiesp;/p,°. Thus the complete Paasche index can be calculated
the usual information available to the price staiign plus information on current period

expenditures.

17.94 Once the complete Laspeyres and Paasche indigeskan calculated using
equations (17.103) and (17.104), then the complsteer index can be calculated as the
square root of the product of these two indices:

Pt =[R™ P (17.105)

It should be noted that the complete Fisher indsfindd by equation (17.105) satisfies
exactly the same index number results as were detnadad in paragraphs 17.27 to 17.32
above; i.e., the Fisher index remains a superlatigdex even if prices are zero in one period
but positive in the other. Thus the Fisher pricexremains a suitable target index even in

the face of zero prices.



